Мичио Каку - Гиперпространство
Если эти рассуждения верны, тогда они означают, что странную симметрию кварков и лептонов, десятилетиями обнаруживаемых главным образом случайно, теперь можно расценивать как побочный эффект колебаний в гиперпространстве. К примеру, если незримые измерения обладают симметрией SU (5), значит, теории Великого объединения SU (5) можно записать как теорию Калуцы-Клейна.
То же самое можно увидеть благодаря риманову метрическому тензору. Как мы помним, он напоминает поле Фарадея, но содержит гораздо больше компонентов. Его можно представить как квадраты на шахматной доске. Отделяя пятый вертикальный и горизонтальный ряды на шахматной доске, мы разграничим поле Максвелла и поле Эйнштейна. А теперь проделаем то же самое с теорией Калуцы-Клейна в (4 + N) — мерном пространстве. Если отделить N вертикальных и горизонтальных рядов от первых четырех рядов по вертикали и по горизонтали, тогда мы получим метрический тензор, описывающий и теорию Эйнштейна, и теорию Янга-Миллса. На рис. 6.2 мы вырезали метрический тензор (4 + N) — мерной теории Калуцы-Клейна, отделив поле Эйнштейна от поля Янга-Миллса.
Рис. 6.2. Если перейти к N-ному измерению, тогда метрический тензор представляет собой ряд чисел №, которые можно расположить в виде блока NxN. Отсекая вертикальные и горизонтальные ряды, начиная с пятого, мы сможем выделить электромагнитное поле Максвелла и поле Янга-Миллса. Таким образом, теория гиперпространства дает возможность объединить поле Эйнштейна, описывающее гравитацию, с полем Максвелла (описывающим электромагнитное взаимодействие) и полем Янга-Миллса (описывающим слабое и сильное взаимодействие). Основополагающие взаимодействия складываются вместе точно, как элементы гигантской головоломки.
По-видимому, одним из первых это упрощение выполнил физик из Техасского университета Брайс Девитт, посвятивший изучению квантовой гравитации много лет. Как только фокус с разложением метрического тензора был открыт, расчеты, необходимые для выделения поля Янга-Миллса, стали очевидными. Девитт считал выделение поля Янга-Миллса из N-мерной теории гравитации настолько простой математической задачей, что давал ее в качестве домашнего задания в летней школе физики в Лез-Уш, во Франции, в 1963 г. [Не так давно Питер Фройнд обнаружил, что Оскар Клейн открыл поле Янга-Миллса еще в 1938 г., на несколько десятилетий опередив Янга, Миллса и остальных. На проходившей в Варшаве конференции «Новые физические теории» Клейн объявил, что нашел способ обобщить работу Максвелла с учетом симметрии высшего порядка О (3). Увы, из-за хаоса, вызванного Второй мировой войной, а также из-за всеобщего увлечения квантовой теорией, немаловажная теория Калуцы-Клейна оказалась забытой. Парадокс заключается в том, что теорию Калуцы-Клейна затмила квантовая теория, в основе которой в настоящее время лежит поле Янга-Миллса, впервые обнаруженное при анализе теории Калуцы-Клейна. В пылу энтузиазма по поводу квантовой теории физики не заметили главного открытия, которым мы обязаны теории Калуцы-Клейна].
Получение поля Янга-Миллса из теории Калуцы-Клейна стало лишь первым шагом. Несмотря на то что симметрию «дерева» удалось разглядеть в скрытой симметрии незримых измерений, следующим этапом должно было стать создание самого «дерева» (состоящего из кварков и лептонов) исключительно из «мрамора». Этот следующий этап получил название супергравитации.
Супергравитация
Превращение «дерева» в «мрамор» по-прежнему сопровождалось серьезными затруднениями, так как согласно Стандартной модели все частицы обладают «спином». Нам уже известно, что «дерево» состоит из кварков и лептонов. Они, в свою очередь, обладают половиной единицы квантового спина (измеряющегося в единицах постоянной Планка ħ). Частицы с полуцелым значением спина (1/2, 3/2, 5/2 и т. д.) называются фермионами (в честь Энрико Ферми, первым исследовавшего их необычные свойства). Однако взаимодействия описываются квантами с целочисленным спином. Например, фотон, или квант света, имеет спин, равный единице, как и поле Янга-Миллса. У гравитона, гипотетической частицы гравитации, спин равен двум единицам. Такие частицы называются бозонами (в честь индийского физика Шатьендраната Бозе).
По традиции в квантовой теории проводилась четкая граница между фермионами и бозонами. И действительно, при любой попытке превратить «дерево» в «мрамор» неизбежно выяснялось, что фермионы и бозоны чуть ли не диаметрально противоположны по свойствам. Так, симметрия SU (N) может менять кварки местами, но не перемешивать фермионы и бозоны. Поэтому открытие новой симметрии, названной суперсимметрией и способной к подобным перетасовкам, потрясло ученых. Уравнения для суперсимметрии позволяли менять местами фермион с бозоном без ущерба для уравнения. Иначе говоря, один мультиплет суперсимметрии состоит из равного количества бозонов и фермионов. При перетасовке бозонов и фермионов в пределах одного и того же мультиплета уравнения суперсимметрии остаются прежними.
При этом у нас возникает заманчивая возможность собрать все частицы Вселенной в один мультиплет! Как подчеркивал нобелевский лауреат Абдус Салам, «суперсимметрия — несомненное притязание на полное объединение всех частиц».
Суперсимметрия опирается на систему исчисления нового вида, способную довести до помешательства любого школьного учителя. Большинство действий умножения и деления, которые мы принимаем как должное, для суперсимметрии не применимы. К примеру, если а и b — два «суперчисла», тогда а x b = — b x а. Конечно, для обыкновенных чисел это невозможно. Школьный учитель не принял бы суперчисла во внимание, так как можно показать, что а x а = — а x а, или, иначе говоря, что а x а = 0. Если бы эти числа были обычными, выражение означало бы, что а = 0 и что вся система исчисления рухнула. Но в случае с суперчислами ничего подобного не происходит; мы имеем поразительное утверждение, согласно которому а x а = 0 даже при а ≠ 0. Несмотря на то что суперчисла опровергают почти все, что нам известно о числах с детства, можно доказать, что они образуют последовательную и в высшей степени нетривиальную систему. Примечательно, что на них можно построить принципиально новую систему суперисчисления.
В 1976 г. три физика — Дэниел Фридман, Серджо Феррара и Питер ван Ньювенхейзен из Университета штата Нью-Йорк в Стоуни-Брук — разработали теорию супергравитации, которая стала первой реалистичной попыткой построить мир из одного только «мрамора». Согласно теории суперсимметрии у всех частиц есть суперпартнеры, называемые счастицами (sparticles). Теория супергравитации физиков из Стоуни-Брук содержит всего два поля: поле гравитона со спином, равным двум (т. е. бозон), и его партнера со спином 3/2, названного гравитино («маленькая гравитация»). Поскольку для Стандартной модели частиц недостаточно, были предприняты попытки увязать эту теорию с более сложными частицами.
Простейший способ включить в теорию супергравитации материю — записать эту теорию для 11 — мерного пространства. А чтобы записать супертеорию Калуцы-Клейна для 11 измерений, надо увеличить количество компонентов риманова тензора, который при этом становится римановым супертензором. Для того чтобы представить, как супергравитация преобразует «дерево» в «мрамор», запишем метрический тензор и посмотрим, каким образом супергравитации удается объединить поле Эйнштейна, поле Янга-Миллса и материальные поля в единое поле супергравитации (рис. 6.3). Важная особенность этой схемы заключается в том, что материя наряду с уравнениями Янга-Миллса и Эйнштейна теперь включена в то же самое 11-мерное поле супергравитации. Суперсимметрия — это симметрия, которая методом перетасовки превращает «дерево» в «мрамор» и наоборот в пределах поля супергравитации. Таким образом, все они — проявления одной и той же силы — силы супервзаимодействия. «Дерево» уже не существует как обособленная данность. Теперь оно слито с «мрамором» и образует «супермрамор» (рис. 6.4)!
Рис. 6.3. Супергравитация — это почти воплощенная мечта Эйнштейна об исключительно геометрическом методе выведения всех взаимодействий и частиц Вселенной. Для того чтобы убедиться в этом, обратите внимание: если добавить суперсимметрию к риманову метрическому тензору, он удваивается в размерах, в итоге у нас появляется риманов метрический супертензор. Новые компоненты этого супертензора соответствуют кваркам и лептонам. Разделяя риманов супертензор на компоненты, мы обнаружим, что он содержит почти все элементарные частицы и взаимодействия, какие есть в природе: теорию гравитации Эйнштейна, поля Янга-Миллса и Максвелла, кварки и лептоны. Но, поскольку в этой картине отсутствуют конкретные частицы, мы вынуждены обратиться к более эффективному набору формул — к теории суперструн.