Kniga-Online.club
» » » » Александр Петров - Гравитация. От хрустальных сфер до кротовых нор

Александр Петров - Гравитация. От хрустальных сфер до кротовых нор

Читать бесплатно Александр Петров - Гравитация. От хрустальных сфер до кротовых нор. Жанр: Физика издательство -, год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

Существует еще один фактор, который снижает яркость неба. Это космологическое красное смещение, о котором речь уже шла.

Но как оказалось, модели, основанные на стандартном (обычном) фридмановском расширении имеют проблемы. Избавились от проблем нерелятивистской космологии, зато приобрели новые. Но ничего не поделаешь, в этом и состоит логика развития науки. Итак, фридмановское расширение имеет место тогда, когда пространство заполнено веществом с обычным уравнением состояния, то есть вещество имеет положительное (или нулевое) давление. Получив начальный импульс (что само по себе также является предметом для изучения), планковский «зародыш» далее расширяется по инерции в соответствии с решениями Фридмана. Все решения Фридмана имеют степенной по времени характер расширения: a(t) ~ tx. В зависимости от типа решения (гиперболическое, плоское, замкнутое) и от свойств наполнителя (материи) определяется конкретное значение x, но в любом случае 0 < x < 1, а это означает, что во всех случаях расширение происходит с замедлением. Это взаимное притяжение материи тормозит ее разлет. На настоящий момент весьма точно известны значения важных параметров модели Вселенной. Используя известный закон расширения, мы можем экстраполировать значения этих параметров на ранние времена, сравнимые с планковкими. Проделав это, мы обнаружим некоторые удивительные факты, не имеющие разумного объяснения. Опишем их ниже.

Рис. 9.6. Причинно связанные области и горизонты

Сначала определим понятие космологического горизонта событий. Пусть в момент времени t = 0 «родилась» вселенная (рис. 9.6). Но для простоты предположим, что эта вселенная не реальная, а «игрушечная», представляет мир Минковского (не расширяющийся и не сжимающийся). Все точки в «начальном» пространстве при t = 0 причинно не связаны. Действительно, они еще не успели обменяться никакими сигналами. Наблюдатель в любой точке в самый начальный момент ничего не видит из-за того, что никакой свет до него еще не дошел. Через момент Δt появятся области пространства размером Δx = cΔt, точки которого обменялись сигналами, пунктирные линии на рис. 9.6 обозначают мировые линии световых лучей. Ясно, что со временем такие причинно связанные области растут, на рис. 9.6 область от x1 до x2 стала причинно связанной за время tA. Чем такие области замечательны? Пусть они заполнены каким-то веществом. В силу случайного рождения оно изначально не однородно и не равновесно. Однако, становясь причинно связанными, эти области имеют большие шансы стать однородными и равновесными, поскольку даже крайние точки могли обменяться сигналами. Вернемся к наблюдателям. С течением времени они будут видеть все большую часть родившегося мира. Наблюдателю в мировой точке A на рис. 9.6 доступна область a1a2, а наблюдателю B в более поздний момент времени – уже область b1b2.

Граница принципиально наблюдаемой области пространства называется горизонтом событий для данного наблюдателя. На данный момент времени размеры горизонта и причинно связанной области одинаковы по порядку величины. В случае нашей «игрушечной» вселенной с пространством Минковского горизонт в 2 раза больше причинно связанной области на тот же момент времени, как показано на рисунке.

Теперь перейдем к обсуждению вселенной Фридмана. В отличие от «вселенной Минковского» она расширяется. Вспомним, что расширение имеет степенной характер по времени a(t) ~ tx при 0 < x < 1. Существует ли горизонт событий для такой вселенной? Поведение масштабного фактора a(t) позволяет вычислить расстояние, которое проходит свет за время t, – оно будет пропорционально t. В то же самое время, вселенная Фридмана расширяется с замедлением. Поэтому распространение света «обгоняет рост масштабного фактора», а значит, горизонт событий существует, и в далеком будущем в его пределах

окажется любая наперед заданная частица. Принципиально вселенная Фридмана имеет те же свойства, как и «игрушечная» вселенная Минковского. Размеры горизонта и причинно связанной области одинаковы по порядку величины на каждый момент времени.

Теперь сформулируем проблему горизонта вселенной Фридмана, или ее еще называют проблемой однородности и изотропии. Возраст Вселенной на настоящий момент считается большим 13 млрд лет, отсюда вычисляется современный горизонт, принципиально наблюдаемая область, который имеет порядок 1028 см. Возвращаясь в планковскую эпоху t = 10–43 с, используя закон расширения Фридмана, получим, что тогда наша современная область наблюдений имела размеры порядка 10–3 см. Такой объем содержал 1090 (!) планковских областей. В планковскую эпоху каждая такая область только что «родилась» и не имела возможности обменяться сигналами с остальными. То есть все они между собой причинно не связаны. Однако, как говорилось, наблюдаемая часть Вселенной весьма однородна и изотропна. Но это означает, что все 1090 начальных планковских областей должны быть одинаковы. В силу неизвестной нам физики можно предположить, что «внутри себя» планковская область однородна и изотропна. Но это же утверждение для 1090 начальных планковских областей невероятно и в рамках фридмановкой космологии объяснения не имеет.

Описание проблемы горизонта на примере планковких масштабов, хотя и выглядит впечатляюще, кому-то покажется оторванным от реальности. Часто, чтобы ее представить, обращаются к вполне подтвержденным наблюдениям. Для этого мы забегаем вперед, несколько предваряя рассказ об эволюции материи во Вселенной. Важным периодом является эпоха рекомбинации водорода. С расширением Вселенная остывает, и, естественно, состояние материи меняется. Был период, когда она была заполнена равновесным газом протонов и электронов совместно с электромагнитным излучением (фотонами). Когда температура достаточно понизилась, это было через 300 000 лет после Большого взрыва, отдельные протоны и электроны объединились в атомы водорода (момент рекомбинации). Среда стала прозрачной для электромагнитного излучения, которое далее расширяется независимо. Как следствие, в наше время это излучение (реликтовое) наблюдается очень остывшим.

Рис. 9.7. Проблема изотропии реликтового излучения

Обратимся к рис. 9.7. Реликтовое излучение приходит к нам с огромного расстояния около 14 млрд световых лет (большой круг). Однако когда это излучение начало свой путь, возраст Вселенной был, как мы отметили, 300 000 лет и за это время обменяться сигналами (пусть световыми) могли небольшие области (маленькие окружности). Два маленьких круга на рисунке никак не могли обменяться сигналами, т. е. они причинно не связаны. Поэтому нет оснований для того, чтобы они имели одинаковые характеристики, скорее, наоборот. Однако реликтовое излучение, которое мы наблюдаем со всей большой сферы, в высшей степени изотропно! Это и есть проблема однородности и изотропии в иной иллюстрации.

Обсудим другую проблему. Каждый из трех типов расширения глобального пространства Вселенной определяется средней плотностью вещества, заполняющего это 3-мерное пространство. Плоскому случаю соответствует критическая плотность. Если плотность меньше – будет гиперболическое пространство, если больше – замкнутое. Важно иметь в виду, что для каждого момента в эволюции критическая плотность имеет разное значение. Так вот, наблюдения показывают, что с очень высокой точностью современная плотность всего вещества во Вселенной близка к критической, то есть мы живем фактически в плоском пространстве, или (что то же самое) в пространстве с огромным радиусом кривизны. Возвращаясь в планковскую эпоху, получим, что тогда плотность должна была быть близкой к критической с невероятной точностью 10–60! Почему так? Объяснить этот факт в рамках обычной фридмановской модели тоже не получается. Это вторая проблема и она называется проблемой плоскостности.

Пойдем дальше. Когда говорилось об однородности – это означало, что видимая часть Вселенной мысленно разбивалась на «кубики», очень мелкие по сравнению со всем наблюдаемым объемом. Однородность означает, что массы всех таких кубиков одинаковы. Условно говоря, в каждом кубике одинаковое количество галактик. Продолжим операцию. Теперь каждый из уже имеющихся кубиков разобьем на еще более мелкие по отношению к исходным. Тогда обнаружится, что какой-то кубик второго порядка малости содержит отдельные галактики, какой-то скопления и даже сверхскопления галактик, а какие-то кубики останутся совсем пустыми. То есть обнаружится, что на меньших масштабах Вселенная неоднородна.

Перейти на страницу:

Александр Петров читать все книги автора по порядку

Александр Петров - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


Гравитация. От хрустальных сфер до кротовых нор отзывы

Отзывы читателей о книге Гравитация. От хрустальных сфер до кротовых нор, автор: Александр Петров. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*