Ричард Фейнман - 6a. Электродинамика
2. Существует экспериментальное подтверждение электромагнитной массы.
3. Все разности масс по порядку величины такие же, как и масса электрона.
Итак, мы снова возвращаемся к первоначальной идее Лоренца, что масса электрона вполне может быть целиком электромагнитной, т. е. все его 0,511 Мэв обусловлены электродинамикой. Так это или нет? У нас нет теории и по сей день, поэтому мы ничего не можем сказать с уверенностью.
Мне хочется упомянуть еще об одном досадном обстоятельстве. В природе существует еще одна частица, называемая m-мезоном, или мюоном, которая, насколько нам известно сегодня, решительно ничем не отличается от электрона, за исключением своей массы (равной 206,77 электронных масс). Она во всем ведет себя так же, как электрон: взаимодействует с нейтрино и электромагнитным полем, но на нее не действуют ядерные силы. С ней не происходит ничего такого, чего не происходит с электронами, по крайней мере ничего такого, чего нельзя было бы объяснить, как простое следствие большей массы. Поэтому, если в конце концов кому-то и удается объяснить массу электрона, для него остается загадкой, откуда же берет свою массу m-мезон. Почему? Да потому, что все, что делает электрон, может делать и m-мезон, так что массы их должны получиться одинаковыми. Есть люди, которые непоколебимо верят, что m-мезон и электрон — это одна и та же частица, что в окончательной будущей теории масс формула, из которой они должны определяться, будет представлять собой квадратное уравнение с двумя корнями, один из которых даст массу m-мезона, а другой — электрона. Есть и такие, которые полагают, что это будет трансцендентное уравнение с бесконечным числом корней; они занимаются гаданием, какими должны быть массы других частиц этого ряда и почему они не открыты до сих пор.
§ 6. Поле ядерных сил
Мне бы хотелось сделать еще несколько замечаний о неэлектромагнитной части массы ядерных частиц. Откуда берется большая доля их массы? Кроме электродинамических сил, существуют еще силы другого рода — ядерные силы, у которых есть своя собственная теория поля, хотя никому неизвестно, правильна она или нет. Эта теория также предсказывает энергию поля, которая для ядерных частиц дает массу, аналогичную электромагнитной. Ее можно называть «p-мезополевой массой». Она, по-видимому, очень велика, так как ядерные силы чрезвычайно мощны, и возможно, что именно они являются причиной массы тяжелых частиц. Однако теории мезонных полей находятся в весьма зачаточном состоянии. Даже в сравнительно хорошо развитой теории электромагнетизма мы видели, что, кроме первоначальных намеков, невозможно получить объяснение массы электрона. В мезонных же теориях мы в этом месте тоже терпим неудачу.
Однако мезонная теория очень интересно связана с электродинамикой, и поэтому стоит все же уделить некоторое время изложению ее основ. Поле в электродинамике можно описать четырехвектором потенциала, удовлетворяющим уравнению
Мы видели, что поле может быть излучено, после чего оно существует независимо от источника. Это фотоны, и они описываются дифференциальным уравнением без источника:
Некоторые физики утверждают, что поле ядерных сил тоже должно иметь свои собственные «фотоны», роль которых, по-видимому, играют p-мезоны, и что они должны описываться аналогичным дифференциальным уравнением. (До чего же бессилен человеческий разум! Мы не можем придумать чего-то действительно нового и беремся рассуждать только по аналогии с тем, что знаем.) Таким образом, возможным уравнением для мезонов будет
где j может быть каким-то другим четырехвектором или, возможно, скаляром. Далее выяснилось, что у p-мезона никакой поляризации нет, поэтому j должно быть скаляром. Согласно этому простому уравнению, мезонное поле должно изменяться с расстоянием от источника как 1/r2, т. е. в точности как электрическое. Однако мы знаем, что радиус действия ядерных сил гораздо меньше, чего не может обеспечить нам это простое уравнение. Есть только один способ изменить положение вещей, не разрушая релятивистской инвариантности,— добавить или вычесть из даламбертиана произведение константы на поле j. Итак, Юкава предположил, что свободные кванты ядерных сил могут подчиняться уравнению
(28.17)
где m2 — некоторая постоянная, т. е. какой-то скаляр. (Поскольку 2 является скалярным дифференциальным оператором, то инвариантность не нарушится, если мы добавим к нему другой скаляр.)
Давайте посмотрим, что дает уравнение (28.17), когда ядерные силы не изменяются с течением времени. Мы хотим найти решение уравнения
которое было бы сферически симметрично относительно некоторой точки, скажем относительно начала координат. Если j зависит только от r, то мы знаем, что
Таким образом, получается уравнение
или
Рассматривая теперь произведение (rj) как новую функцию, мы имеем для нее уравнение, которое встречалось нам уже много раз. Решение ее имеет вид
Ясно, что при больших r поле j не может быть бесконечным, поэтому нужно отбросить знак плюс в показателе экспоненты, после чего решение примет вид
(28.18)
Эта функция называется потенциалом Юкавы. Для сил притяжения К должно быть отрицательным числом, величина которого подбирается так, чтобы удовлетворить экспериментально наблюдаемой величине ядерных сил.
Потенциал Юкавы благодаря экспоненциальному множителю угасает быстрее, чем 1/r. Как это видно из фиг. 28.6, для расстояний, превышающих 1/m, потенциал, а следовательно, и ядерные силы приближаются к нулю гораздо быстрее, чем 1/r. Поэтому «радиус действия» ядерных сил гораздо меньше «радиуса действия» электростатических. Экспериментально доказано, что ядерные силы не простираются на расстояния свыше 10-13 см, поэтому
m»1015 м-1.
Фиг. 28.6. Сравнение потенциала Юкавы. е-mr/r с кулоновым потенциалом 1/r.
И, наконец, давайте рассмотрим волновое решение уравнения (28.17). Если мы подставим в него
то получим
Связывая теперь частоту с энергией, а волновое число с импульсом, как это делалось в конце гл. 34 (вып. 3), мы найдем соотношение
которое говорит, что масса «фотона» Юкавы равна mh/с. Если в качестве m взять величину ~1015м-1, которую дает наблюдаемый радиус действия ядерных сил, то масса оказывается равной 3·10-25 г, или 170 Мэв, что приблизительно равно наблюдаемой массе p-мезона. Таким образом, по аналогии с электродинамикой мы бы сказали, что p-мезон — это «фотон» поля ядерных сил. Однако теперь мы распространили идеи электродинамики в такую область, где они на самом деле могут оказаться и неверными. Мы вышли далеко за рамки электродинамики и очутились перед проблемой ядерных сил.
* Мы пользуемся такими обозначениями x=dx/dt, x=d2x/dt2, x=d3x/dt3 и т. д.
Глава 29
ДВИЖЕНИЕ ЗАРЯДОВ В ЭЛЕКТРИЧЕСКОМ И МАГНИТНОМ ПОЛЯХ
§ 1. Движение в однородных электрическом я магнитном полях
§ 2. Анализатор импульсов
§ 3. Электростатическая линза
§ 4. Магнитная линза
§ 5. Электронный микроскоп
§ 6. Стабилизирующие поля ускорителей
§ 7. Фокусировка чередующимся градиентом
§ 8. Движение в скрещенных электрическом и магнитном полях
Повторить: гл. 30 (вып. 3) «Дифракция».
§ 1. Движение в однородных электрическом и магнитном полях
Мы теперь перейдем к описанию в общих чертах движения зарядов в различных условиях. Наиболее интересные явления возникают тогда, когда зарядов движется много и все они взаимодействуют друг с другом. Так обстоит дело, когда электромагнитные волны проходят через кусок вещества или плазму; тогда легионы зарядов взаимодействуют друг с другом. Но это очень сложная картина. Позднее мы поговорим и о таких проблемах; пока же мы обсудим несравненно более простую задачу о движении отдельного заряда в заданном поле. При этом можно пренебречь всеми другими зарядами, за исключением, разумеется, тех зарядов и токов, которые создают предполагаемое нами поле.