Ричард Фейнман - 6. Электродинамика
Предположим, что мы начали с того, что взяли элементы объема DVi некоторой толщины w, много меньшей а.
Отдельные элементы объема будут выглядеть так, как показано на фиг. 21.7, а. Их нарисовано гораздо больше, чем нужно, чтобы закрыть весь заряд. А сам заряд не показан, и по весьма существенной причине. Где его нужно нарисовать? Ведь для каждого элемента объема DVi надо брать r в свой момент t~(t-r/с). Но раз заряд движется, то для каждого элемента объема DVi он окажется в другом месте!
Начнем, скажем, с элемента объема 1 на фиг. 21.7, а, выбранного так, чтобы в момент tl = (t-r1/с) «задняя» грань заряда пришлась на DVi (фиг, 21.7, б).
Фиг. 21.6, Элемент объема DVi, используемый для вычисления потенциалов.
Фиг. 21.7. Интегрирование r(t-r'/c)dV для движущегося заряда.
Тогда, вычисляя r2DV2, нужно взять положение заряда в несколько более позднее время t2=(t- r2/c) и заряд к этому времени сместится в положение, показанное на фиг. 21.7, в. Так же будет с DV3, DV4 и т. д. Вот теперь можно подсчитывать сумму.
Толщина каждого DVi- равна w, а объем wa2. Поэтому каждый элемент объема, накладывающийся на распределение заряда, содержит в себе заряд wa2r, где r — плотность заряда внутри куба (мы считаем ее однородной). Когда расстояние от заряда до точки (1) велико, то можно все ri в знаменателях положить равными некоторому среднему значению, скажем, взятому с учетом запаздывания положению r' центра куба. Сумма (21.30) превращается в
где DVN—тот последний элемент DVi, который еще накладывается на распределение зарядов (см. фиг. 21.7, д). Сумма тем самым равна
Но ra3 — просто общий заряд q, a Nw—длина b, показанная на фиг. 21.7, д. Получается
(21.31)
А чему же равно b? Это длина куба зарядов, увеличенная на расстояние, пройденное зарядом за время от t1=(t-r1/с) до tN=(t—rN/с). Это расстояние, пройденное зарядом за время
А поскольку скорость заряда равна v, то пройденное расстояние равно vDt = vb/c. Но длина b — само это расстояние плюс a:
Отсюда
Здесь, конечно, под v подразумевается скорость в «запаздывающий» момент t' = (t-r'/с); это можно указать, записав [1—v/c]зап; тогда уравнение (21.23) для потенциала принимает вид
Это согласуется с тем, что было предположено в (21.29). Появился поправочный множитель. Он появился потому, что в то время, как наш интеграл «проносится над зарядом», сам заряд движется. Когда заряд движется к точке (1), его вклад в интеграл увеличивается в b/а раз. Поэтому правильное значение интеграла равно q/r', умноженному на b/а, т.е. на 1/[1—v/c]зan.
Если скорость заряда направлена не к точке наблюдения (1), то легко видеть, что важна только составляющая его скорости в направлении к точке (1). Если обозначить эту составляющую скорости через vr, то поправочный множитель запишется в виде 1/[1-vr/с]зап. Кроме того, проделанный нами анализ в равной степени проходит для распределения заряда любой формы (это не обязательно должен быть куб). Наконец, поскольку «размер» а заряда не вошел в окончательный итог, то тот же результат получится, если заряд стянется до любых размеров, вплоть до точки. Общий результат состоит в том, что скалярный потенциал точечного заряда, движущегося с произвольной скоростью,
(21.32)
Это уравнение часто пишут в эквивалентном виде:
(21.33)
где r — вектор, соединяющий заряд с той точкой (1), в которой вычисляется потенциал j, а все величины в скобках надо вычислять в «запаздывающий» момент времени t'=(t—r'/c).
То же самое получается и тогда, когда по (21.16) вычисляют А для точечного заряда. Плотность тока равна rv, а интеграл от r — тот же, что и в j. Векторный потенциал равен
(21.34)
Потенциалы точечного заряда в этой форме были впервые получены Льенаром и Вихертом. Их так и называют: потенциалы Льенара — Вихерта.
Чтобы замкнуть круг и вернуться к формуле (21.1), теперь нужно только подсчитать Е и В из этих потенциалов (при помощи B=СXA и Е=-Сj-dA/dt). Теперь остается одна арифметика. Впрочем, арифметика эта довольно запутанна, так что мы не будем приводить здесь детали счета. Придется поверить мне на слово, что формула (21.1) эквивалентна выведенным нами потенциалам Льенара — Вихерта.
*Если у вас достаточно времени и вам не жаль бумаги, то попытайтесь проделать это самостоятельно. Вот вам парочка советов: во-первых, не забывайте, что производные r' довольно запутанны, ведь они суть функции от t'! Во-вторых, не пытайтесь вывести формулу (21.1); лучше проделайте в ней все дифференцирования и затем сопоставьте то, что у вас получится, с выражением для Е, полученным из потенциалов (21.33) и (21.34).
§ 6. Потенциалы заряда, движущегося с постоянной скоростью; формула Лоренца
Применим теперь потенциалы Льенара — Вихерта к случаю заряда, движущегося по прямой с постоянной скоростью, и вычислим поле этого заряда. Позже мы повторим этот вывод, используя уже принцип относительности. Мы знаем величину потенциалов в той системе, в которой заряд покоится. Когда заряд движется, то все получается простым релятивистским преобразованием от одной системы к другой. Но теория относительности ведет свое начало от теории электричества и магнетизма. Формулы преобразований Лоренца [см. гл. 15 (вып. 2)]— это открытия, сделанные Лоренцем при исследовании уравнений электричества и магнетизма. И для того чтобы вы понимали, откуда все пошло, я хочу показать вам, что уравнения Максвелла действительно приводят к преобразованиям Лоренца. Я начну с вычисления потенциала равномерно движущегося заряда прямо из электродинамики, из уравнений Максвелла. Мы уже показали, что уравнения Максвелла приводят к потенциалу, полученному в предыдущем параграфе. Стало быть, пользуясь этими потенциалами, мы используем тем самым теорию Максвелла.
Пусть имеется заряд, движущийся вдоль оси х со скоростью v (фиг. 21.8). Нас интересуют потенциалы в точке Р(х, у, z). Если (=0 — момент, в который заряд проходит через начало координат, то в момент t заряд окажется в точке x—vt, y=z=0. А нам нужно знать его положение с учетом запаздывания, т. е. положение в момент
(21.35)
где r' — расстояние от заряда до точки Р в этот запаздывающий момент. В это более раннее время t' заряд был в x=vt', так что
(21.36)
Чтобы найти r' или t', это уравнение надо сопоставить с (21.35). Исключим сперва r', решив (21.35) относительно r' и подставив в (21.36). Возвысив затем обе части в квадрат,
т. е. квадратное уравнение относительно t'. Раскрыв скобки и расположив члены по степеням t', получим
Фиг. 21.8. Определение потенциала в точке Р заряда, движущегося равномерно вдоль оси х.
Отсюда найдем
Чтобы получить r', надо это t' подставить в
Теперь мы уже можем найти j из выражения (21.33), имеющего вид
(21.38)
(ввиду того, что v постоянно).
Составляющая v в направлении r' равна v(x-vt')/r', так что v·r' просто равно v(x-vt'), а весь знаменатель равен
Подставляя (1-v2/c2)t' из (21.37), получаем
Это уравнение становится более понятным, если переписать его в виде
Векторный потенциал А — это такое же выражение, но с добавочным множителем v/c2: