Kniga-Online.club
» » » » Ричард Фейнман - 4. Кинетика. Теплота. Звук

Ричард Фейнман - 4. Кинетика. Теплота. Звук

Читать бесплатно Ричард Фейнман - 4. Кинетика. Теплота. Звук. Жанр: Физика издательство неизвестно, год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

Фиг. 45.3. Изотермы конденси­рующегося пара.

Пар сжимается в цилиндре. Слева — все вещество превратилось в жидкость; справа — вся жидкость испарилась; в середине — в цилиндре сосуществуют жидкость и пар.

Если увеличивать объем, выдвигая поршень из цилиндра, давление будет падать, пока мы не достигнем точки кипения жидкости и в цилиндре появится пар. Дальнейшее вытягивание поршня приведет к более сильному испарению. Когда цилиндр заполнен частично паром, а частично жидкостью, то между ними устанавливается равновесие — жидкость испаряется, пар кон­денсируется, и скорости этих процессов равны. Если предоста­вить пару больший объем, то, чтобы удержать прежнее давле­ние, понадобится больше пара. Поэтому, хоть жидкость все испаряется, давление остается прежним. Вдоль плоской части кривой на фиг. 45.3 давление не изменяется, это давление назы­вается давлением пара при температуре Т. Если объем все увеличивается, наступит момент, когда запасы жидкости иссяк­нут. В такой ситуации давление падает при увеличении объема, ведь теперь мы имеем дело с обычным газом; это изображено в правой части диаграммы Р—V. Нижняя кривая на фиг. 45.3— это изотермическая кривая при более низкой температуре Т—DT. Давление жидкости в этом случае немного меньше, потому что с ростом температуры жидкости расширяются (не все жидкости, вода около точки замерзания поступает наоборот), а давление пара при уменьшении температуры, конечно, падает.

Из двух изотерм можно снова построить цикл, соединив концы их плоских участков (скажем, адиабатами), как это показано на фиг. 45.4. Небольшая зазубрина в нижнем правом углу фигуры несущественна, и мы просто забудем о ней. Исполь­зуем аргументы Карно, которые показывают, как связано тепло, подведенное к жидкости для превращения ее в пар, с работой, совершаемой веществом при обходе цикла. Пусть L—это тепло, необходимое для испарения жидкости в цилиндре. Вспом­ним, как мы рассуждали при выводе уравнения (45.5), и не­медленно скажем, что L(DT/T) равно работе, совершенной ве­ществом. Как и раньше, работа вещества равна площади, за­ключенной внутри цикла. Эта площадь приблизительно равна DP(VG—VL), где DР — разность давлений пара при температурах Т и Т—DT, VG объем газа, a VLобъем жидкости. Оба объе­ма надо измерять при давлении, равном давлению пара.

Сравнивая два выражения для работы, мы получаем L(DT/T)= DP(VG-VL), или

Уравнение (45.14) связывает скорость изменения давления пара с температурой и количеством тепла, необходимым для испа­рения жидкости. Хотя вывел его Карно, называется оно урав­нением Клаузиуса — Клайперона.

Сравним уравнение (45.14) с результатом, следующим из ки­нетической теории. Обычно VG гораздо больше VL. Поэтому VG-VL»VG=RT/P на моль. Если еще предположить, что L — не зависящая от температуры постоянная (хотя это не очень хорошее приближение), то мы получим dP/8T=L/(RT2P). Вот решение этого дифференциального уравнения:

P=const·e-L/RT. (45.15)

Надо выяснить, в каких отношениях находится это выраже­ние с полученной ранее с помощью кинетической теории за­висимостью давления от температуры. Кинетическая теория говорит, хотя и очень неопределенно, что число молекул пара над жидкостью примерно равно

где UG—UL разность отнесенных к молю внутренних энергий газа и жидкости. Термодинамическое уравнение (45.15) и кине­тическое уравнение (45.16) очень похожи, потому что давление равно nkT, но все-таки это разные уравнения. Однако их можно сделать одинаковыми, если заменить старое предположение L=const предположением о том, что L—UG=const. Если предположить, что L—UG не зависящая от температуры постоянная, то соображения, из которых ранее следовало (45.15), при­ведут теперь к уравнению (45.16).

Это сравнение показывает преимущества и недостатки тер­модинамики по сравнению с кинетической теорией. Прежде всего полученное термодинамически уравнение (45.14) — это точное соотношение, а (45.16) — всего-навсего приближение. Ведь нам пришлось предположить, что U приблизительно постоянна и что наша модель верна. Во-вторых, нам, быть мо­жет, никогда не удастся понять до конца, как газ переходит в жидкость, и все-таки уравнение (45.14) правильно, а (45.16)— это только приближение. В-третьих, хотя мы говорили о прев­ращении газа в жидкость, наши аргументы верны для любого перехода из одного состояния в другое. Например, переход твердое тело — жидкость описывается кривыми, очень похо­жими на кривые фиг. 45.3 и 45.4.

Фиг. 45.4. Диаграмма Р — V для цикла Карно с конденсирующимся в цилиндре паром.

Слева — все вещество переходит в жидкость. Чтобы полностью испарить ее при температуре Т, нужно добавить тепла L. При падении температуры от Т до Т—DT пар расширяется адиаба­тически.

Вводя скрытую теплоту плав­ления М/моль, мы получим формулу, аналогичную уравне­нию (45.14): (дPпл/дT)V=M/[T(VL-VS)]. Мы можем не знать ничего о кинетической теории процесса плавления, а все же получить правильное уравнение. Однако если мы узнаем кинетическую теорию, то сразу же получим большое пре­имущество. Уравнение (45.14) — это всего лишь дифферен­циальное уравнение, и мы еще совершенно не умеем находить постоянные интегрирования. В кинетической теории можно вычислить и эти постоянные, надо только придумать хорошую модель, описывающую все явление полностью. Итак, в каждой теории есть и хорошее, и плохое. Если познания наши слабы, а картина сложна, то термодинамические соотношения ока­зываются самым мощным средством. Когда же картина упро­щается настолько, что можно ее проанализировать теоретиче­ски, то лучше сначала попробовать выжать из этого анализа как можно больше.

Еще один пример: излучение черного тела. Мы уже гово­рили об ящике, содержащем излучение и ничего больше, и уже толковали о равновесии между излучением и осциллятором.

Мы выяснили также, что когда фотоны ударяются о стенки ящи­ка, они создают давление Р. Мы вывели формулу PV=U/3, где U — полная энергия фотонов, а V — объем ящика. Если под­ставить U=3РV в основное уравнение (45.7),то обнаружится, что

Поскольку объем ящика не изменяется, можно заменить (дP/дT)Vна dP/dT и получить обыкновенное дифференциальное уравне­ние. Оно легко интегрируется и дает lnP=4lnT+const, или Р=const·T4. Давление излучения изменяется как четвертая степень температуры, поэтому заключенная в излучении энер­гия U/V=P/3 тоже меняется как T4. Обычно пишут так: U/V=(4s/с)T4, где с — скорость света, а s— другая посто­янная. Термодинамика сама по себе ничего не скажет нам об этой постоянной. Это хороший пример и ее могущества, и ее бес­силия. Знать, что U/V изменяется как T4, — это уже большое дело, но узнать, чему именно равно U/V при той или иной тем­пературе, можно, только разобравшись в деталях полной тео­рии. У нас есть теория излучения черного тела и сейчас мы вы­числим а.

Пусть I(w)dw — распределение интенсивности, иначе говоря, поток энергии через 1 м2за 1 сек в интервале частот между w и w+dw:

Распределение плотности энергии =

поэтому

U/V=Полная плотность энергии,

(Плотность энергии между w и w+dw),

Мы уже успели узнать, что

Подставляя выражение для I (w) в наше уравнение для U/V, получаем

Если сделать замену переменных x=hw/kT, то это выраже­ние примет вид

Этот интеграл — просто-напросто какое-то число, и мы можем найти его приближенно. Для этого надо лишь вычертить подын­тегральную кривую и подсчитать площадь под ней. Она прибли­зительно равна 6,5. Математики могут вычислить наш интеграл точно, он равен p4/15. Сравнивая это выражение с записан­ным ранее U/V=(4s/с)T4, мы найдем s:

Перейти на страницу:

Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


4. Кинетика. Теплота. Звук отзывы

Отзывы читателей о книге 4. Кинетика. Теплота. Звук, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*