Kniga-Online.club

Мичио Каку - Гиперпространство

Читать бесплатно Мичио Каку - Гиперпространство. Жанр: Физика издательство -, год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

Когда смотришь на все эти тупиковые пути и неудачные начала физики частиц того периода, невольно вспоминается анекдот про ученого и блоху.

Однажды ученый выдрессировал блоху, чтобы она подпрыгивала при звуке колокольчика. Затем, используя микроскоп, он обездвижил одну лапку блохи и после этого позвонил. Блоха все равно подпрыгнула.

Ученый обездвижил вторую лапку и опять позвонил. Блоха снова подпрыгнула.

Так ученый раз за разом выводил из строя конечности блохи, но, когда подавал сигнал, всякий раз записывал в журнале наблюдений, что блоха сделала прыжок.

Наконец непарализованной осталась лишь одна блошиная нога. Когда же ученый обездвижил и эту ногу и подал сигнал, к его удивлению, блоха не подпрыгнула.

И ученый торжественно обнародовал вывод, сделанный на основании неопровержимых научных данных: блохи слышат с помощью ног!

Хотя специалисты в области физики высоких энергий часто напоминают ученых из этого анекдота, за несколько десятилетий постепенно начала складываться последовательная квантовая теория вещества. В 1971 г. голландец, аспирант Герард ʼт Хоофт, которому в то время было немногим больше двадцати лет, сделал ключевое открытие, способствовавшее единому описанию трех квантовых сил (за исключением силы тяготения), в итоге изменившее ландшафты теоретической физики.

Опираясь на аналогию с фотонами, квантами света, физики предположили, что слабое и сильное взаимодействия вызвано обменом квантами энергии, получившими название квантов полей Янга-Миллса. Поля Янга-Миллса, которые в 1954 г. открыли Чжэньнин Янг и его ученик Роберт Миллс, представляют собой обобщение поля Максвелла, введенного веком ранее для описания света, с той разницей, что поле Янга-Миллса может быть более многокомпонентным и иметь электрический заряд (фотон электрическим зарядом не обладает). В случае слабого взаимодействия квант, соответствующий полю Янга-Миллса, — это W-частица, которая может иметь заряд, равный +1, 0 или -1. Для случая сильного взаимодействия квант, соответствующий полю Янга-Миллса, — тот «клей», который удерживает вместе протоны и нейтроны, — был назван глюоном.

Несмотря на то что в целом картина выглядела убедительно, в 1950–1960-е гг. физиков сбивало с толку то, что поле Янга-Миллса не относится к «перенормируемым», т. е. не дает конечных и значимых величин применительно к простым взаимодействиям. Таким образом, с точки зрения описания слабых и сильных взаимодействий квантовая теория бесполезна. Квантовая физика уперлась в глухую стену.

Проблема возникла, так как физики, вычисляя, что произойдет при столкновении двух частиц, пользовались так называемой теорией возмущений, т. е. завуалированным способом указать, что они прибегали к хитроумным приближениям. К примеру, на рис. 5.2, а мы видим, что происходит при столкновении электрона с другой частицей, участвующей в слабом взаимодействии, — неуловимым нейтрино. На первый взгляд, это взаимодействие можно описать диаграммой (она называется «диаграммой Фейнмана»), показывающей, что обмен квантом слабого взаимодействия — W-частицей — происходит между электроном и нейтрино. В первом приближении мы получаем грубое, но приемлемое соответствие экспериментальным данным.

Рис. 5.2. а — по квантовой теории при столкновении субатомные частицы обмениваются порциями энергии, или квантами; электроны и нейтрино обмениваются квантом слабого взаимодействия, называемым W-частицей; б — для вычисления полного взаимодействия электронов и нейтрино необходимо добавить бесконечный ряд линий — диаграмм Фейнмана, на которых обмен квантами представлен в виде постепенно усложняющихся геометрических рисунков. Этот процесс добавления бесконечного ряда линий к диаграммам Фейнмана называется теорией возмущений.

Однако согласно квантовой теории в наше первое приближение следует внести небольшие поправки. Чтобы сделать наши вычисления строгими, надо также добавить к диаграммам Фейнмана все возможные линии, в том числе с «петлями» на них, как на рис. 5.2, б. В идеале эти квантовые поправки должны быть совсем маленькими. Ведь как мы уже упоминали, квантовая теория для того и предназначена, чтобы вносить крохотные квантовые поправки в ньютонову физику. Но, к ужасу ученых, эти квантовые поправки, или «петлевые линии», оказались не маленькими, а бесконечными. Как ни мудрили физики над своими формулами, как ни пытались замаскировать эти бесконечные величины, расхождения упорно обнаруживались при любых вычислениях квантовых поправок.

Более того, поле Янга-Миллса приобрело устрашающую репутацию метода, головоломно усложняющего расчеты — в сравнении с более простым полем Максвелла. Согласно мифам, с которыми ассоциируется поле Янга-Миллса, для практических вычислений оно совершенно не подходит ввиду своей сложности. Вероятно, ʼт Хоофту просто повезло: будучи аспирантом, он еще не успел заразиться предубеждениями маститых физиков. Пользуясь методами, которые первым описал его научный руководитель Мартинус Велтман, ʼт Хоофт доказал: всякий раз, когда мы сталкиваемся с «нарушением симметрии» (о нем мы поговорим далее), поле Янга-Миллса приобретает массу, но остается конечной теорией, ʼт Хоофт продемонстрировал, что благодаря графам с петлями можно не рассматривать бесконечности или нивелировать их влияние.

Почти через 20 лет после того, как поле Янга-Миллса было предложено авторами, Хоофт наконец доказал, что оно является корректной и однозначной теорией взаимодействия частиц. Известие о работе ʼт Хоофта распространилось молниеносно. Нобелевский лауреат Шелдон Глэшоу вспоминает, что он, услышав эту новость, воскликнул: «Либо этот парень полный кретин, либо величайший гений, появившийся в физике впервые за много лет!»[54] Дальнейшее развитие событий было стремительным. Быстро выяснилось, что верна более ранняя теория слабого взаимодействия, предложенная в 1967 г. Стивеном Вайнбергом и Абдусом Саламом. К середине 1970-х гг. поле Янга-Миллса было применено к сильному взаимодействию. Тогда же, в 1970-х гг., к физикам пришло ошеломляющее понимание, что поле Янга-Миллса может оказаться ключом к тайнам всей ядерной материи.

Таким оказался недостающий элемент головоломки. Секрет «дерева», связующий воедино материю, — не геометрия Эйнштейна, а поле Янга-Миллса. По-видимому, именно оно, а не геометрия, представляло собой главный урок физики.

Стандартная модель

Сегодня поле Янга-Миллса открыло возможность всеобъемлющей теории материи. Мы настолько уверены в этой теории, что ласково называем ее Стандартной моделью.

Стандартная модель способна объяснить все экспериментальные данные, касающиеся субатомных частиц с энергией вплоть до 1 ТэВ (энергией, возникающей при ускорении электрона в поле, созданном разностью потенциалов в триллион вольт). Это почти предел для ускорителей, существующих в настоящее время[55]. Следовательно, можно без преувеличения сказать, что Стандартная модель — самая удачная теория в истории науки.

Согласно Стандартной модели каждое взаимодействие, связывающее различные частицы, создается при обмене различными видами квантов. Сейчас мы рассмотрим силы по отдельности, а затем объединим их в Стандартную модель.

Сильное взаимодействие

Стандартная модель гласит, что протоны, нейтроны и другие тяжелые частицы вовсе не являются элементарными, а состоят из других, еще более малых частиц — кварков. В свою очередь, кварки различают по трем «цветам» и шести «ароматам» (эти термины не имеют никакого отношения к цветам и ароматам в привычном понимании этих слов). Существуют также аналоги кварков, характерные для антиматерии, — антикварки. (Антиматерия идентична материи во всех отношениях, но имеет противоположные заряды и аннигилирует при соприкосновении с обычной материей.) Таким образом, получаем 3x6x2 = 36 кварков.

В свою очередь, кварки удерживаются вместе благодаря обмену небольшими порциями энергии — глюонами. Математически эти глюоны описываются полем Янга-Миллса, которое «сгущается» в липкую субстанцию, которая прочно связывает кварки между собой. Глюонное поле обладает такой силой и связывает кварки так прочно, что их невозможно оторвать друг от друга. Это явление называется кварковым конфайнментом, им можно объяснить причину, по которой свободные кварки так и не удалось получить экспериментальным путем.

Например, протон и нейтрон можно сравнить с тремя стальными шарами (кварки) в метательном снаряде для ловли скота бола, им не дает разлететься Y-образная бечевка (глюон). Другие частицы, между которыми существует сильное взаимодействие, например 7 π-мезон, можно сравнить с кварком и антикварком, которые удерживаются вместе одной бечевкой (рис. 5.3).

Перейти на страницу:

Мичио Каку читать все книги автора по порядку

Мичио Каку - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


Гиперпространство отзывы

Отзывы читателей о книге Гиперпространство, автор: Мичио Каку. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*