Неприятности с физикой: взлёт теории струн, упадок науки и что за этим следует - Смолин Ли
Но какова бы ни была её окончательная судьба, возникает загадка относительно судьбы информации. В течение жизни чёрной дыры она втягивает гигантское количество вещества, переносящего гигантское количество внутренней информации. В конце же всё, что останется, это много горячей радиации, — которая, будучи хаотичной, не переносит информации совсем, — и микроскопическая чёрная дыра. Информация просто исчезла?
Это проблема для квантовой гравитации, поскольку в квантовой механике имеется закон, который говорит, что информация никогда не может быть разрушена. Квантовое описание мира предполагается точным, а отсюда вытекает, что, когда все детали приняты во внимание, информация не может быть потеряна. Хокинг сделал сильное утверждение, что испаряющаяся чёрная дыра теряет информацию. Это кажется противоречащим квантовой теории, так что он назвал это утверждение информационным парадоксом чёрной дыры. Любая предполагаемая квантовая теория гравитации нуждается в его разрешении.
Эти открытия 1970-х были контрольными точками на пути к квантовой теории гравитации. С тех пор мы измеряли успех подхода к квантовой гравитации частично тем, насколько хорошо он отвечает на заданные вопросы по энтропии, температуре и потере информации в чёрных дырах.
Примерно в это время была, наконец, предложена идея по поводу квантовой гравитации, которая, кажется, работает, по меньшей мере, временами. Она привлекла использование идеи суперсимметрии к гравитации. В результате появилась супергравитация.
Я присутствовал на одной из первых презентаций, когда-либо дававшихся по этой новой теории. Это была конференция в 1975 году в Цинциннати по развитию ОТО. Я был всё ещё студентом в Хэмпширском колледже, но я ходил всюду, надеясь узнать, о чём люди думали. Я помню некоторые прекрасные лекции Роберта Героха из Чикагского университета, который был тогда звездой в области математики бесконечных пространств. Он получил продолжительные овации за одну особенно элегантную демонстрацию. Тогда же было задвинутое в самый конец конференции сообщение молодого постдока по имени Петер ван Ньювенхёйзен. Я вспоминаю, что он изрядно нервничал. Он начал со слов, что он находится здесь, чтобы ввести качественно новую теорию гравитации. Он полностью завладел моим вниманием.
Ван Ньювенхёйзен сказал, что эта новая теория основана на суперсимметрии, тогда новой ещё идее по унификации бозонов и фермионов. Частицы, которые мы получаем из квантования гравитационных волн, называются гравитонами, и они являются бозонами. Но для суперсимметричной системы должны быть как бозоны, так и фермионы. ОТО не имеет фермионов, так что новые фермионы должны быть гипотетически суперпартнёрами гравитонов. «Сгравитон» не лёгкое для произношения слово, так что они были названы гравитино.
Поскольку гравитино никогда не наблюдались, он сказал, что мы свободны в придумывании законов, которым они удовлетворяют. Для теории, которая симметрична относительно суперсимметрии, силы не должны изменяться, когда гравитино заменяются на гравитоны. Это устанавливает много ограничений на законы, и поиск решений с такими ограничениями требует недель кропотливых вычислений. Две команды исследователей финишировали почти одновременно. Ван Ньювенхёйзен был частью одной из этих команд; другая включала моего будущего консультанта в Гарварде Стэнли Дезера, который работал с одним из открывателей суперсимметрии, Бруно Зумино.
Ван Ньювенхёйзен также говорил о более глубоком способе подумать о теории. Мы начинаем с размышлений о симметриях пространства и времени. Свойства обычного пространства остаются неизменными, если мы вращаемся, поскольку в нём нет предпочтительного направления. Они также остаются неизменными, если мы движемся от места к месту, поскольку геометрия пространства однородна. Таким образом, трансляции и вращения являются симметриями пространства. Вспомним, что в главе 4 я объяснял калибровочный принцип, который устанавливает, что при некоторых обстоятельствах симметрия может диктовать законы, которым удовлетворяют силы. Вы можете применить этот принцип к симметриям пространства и времени. Результатом будет в точности ОТО Эйнштейна. Это не тот путь, каким Эйнштейн нашёл свою теорию, но если бы Эйнштейна не существовало, этим путём ОТО могла бы быть найдена.
Ван Ньювенхёйзен объяснил, что суперсимметрия может рассматриваться как углубление симметрий пространства. Это происходит вследствие глубокого и красивого свойства: Если вы заменяете все фермионы на бозоны, а затем заменяете их назад, вы получаете тот же самый мир, который был до замены, но со всеми вещами, сдвинутыми на маленький кусочек в пространстве. Я не могу здесь объяснить, почему это верно, но это говорит нам, что суперсимметрия некоторым образом фундаментально связана с геометрией пространства. Как следствие, если вы примените калибровочный принцип к суперсимметрии, вы получите теорию гравитации — супергравитацию. С этой точки зрения супергравитация значительно глубже ОТО.
Я был новобранцем в этой области, заглянувшим на конференцию. Я не знал здесь никого, так что я не знал, что слушатели ван Ньювенхёйзена думают о том, что он сказал, но я был глубоко впечатлён. Я шёл домой, думая, что это была хорошая вещь, что парень был таким взволнованным, ибо, если то, что он сказал, было верным, это должно быть на самом деле важным.
Во время моего первого года аспирантуры я, конечно, разговаривал со Стэнли Дезером, который читал лекции о новой теории супергравитации. Мне было интересно, и я начал думать о ней, но я был озадачен. Что это всё означало? О чём это пыталось нам сказать? У меня появился новый друг, однокурсник по имени Мартин Рочек, он также был возбуждён. Он быстро созвонился по телефону с Петером ван Ньювенхёйзеном, который пребывал в городе Стони Брук, Нью-Йорк, и начал сотрудничать с ним и его студентами. Стони Брук был недалеко, и Мартин взял меня с собой в один из визитов туда. Ситуация только начала набирать обороты, и он хотел дать мне шанс включиться в неё самого начала.
Это было, как если бы мне предложили одну их первых работ в Microsoft или Google. Рочек, ван Ньювенхёйзен и многие из тех, с кем я встречался благодаря им, сделали блестящие карьеры на суперсимметрии и супергравитации.
Я согласен, что с их точки зрения я действовал как дурак и упустил великолепную возможность.
Для меня (и для других, с кем я согласен) соединение суперсимметрии и теории пространства и времени вызывает большие вопросы. Я изучал ОТО, читая Эйнштейна, и, если я что-нибудь понял, речь идёт о том, как эта теория соединяет гравитацию с геометрией пространства и времени. Эта идея проникла у меня до мозга костей. Теперь мне говорят, что другой глубокий аспект природы также объединяется с пространством и временем — факт, что имеются фермионы и бозоны. Мои друзья говорили мне это, и уравнения говорят то же самое. Но ни друзья, ни уравнения не говорят мне, что это означает. У меня отсутствует идея, концепция вещи. Нечто в моём понимании пространства и времени, гравитации и того, что означает быть фермионом или бозоном, должно углубиться в результате этой унификации. Это должна быть не просто математика — сама моя концепция природы должна измениться.
Но она не меняется. Что я нашёл, когда я болтался со студентами ван Ньювенхёйзена, это группу умных, технически аккуратных ребят, яростно проводивших вычисления, днём и ночью. То, что они делали, было придумыванием версий супергравитации. Каждая версия имела больше симметрий, чем последняя, унифицируя большее семейство частиц. Они двигались по направлению к окончательной теории, которая объединила бы все частицы и силы с пространством и временем. Эта теория имеет только техническое название, теория N=8. N означает число различных способов перепутывания фермионов и бозонов. Первая теория — та, с которой ван Ньювенхёйзен и Дезер меня познакомили, — была простейшая, N=1. Некоторые люди в Европе работали над N=2. Неделю, что я был в Стони Брук, люди там двигались к N=4 на своём пути к N=8.