Kniga-Online.club
» » » » Новый ум короля: О компьютерах, мышлении и законах физики - Пенроуз Роджер

Новый ум короля: О компьютерах, мышлении и законах физики - Пенроуз Роджер

Читать бесплатно Новый ум короля: О компьютерах, мышлении и законах физики - Пенроуз Роджер. Жанр: Физика год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

275817487333272966

789987984732840981

907648512726310017

401667873634776058

572450369644348979

920344899974556624

029374876688397514

044516657077500605

138839916688140725

455446652220507242

623923792115253181

625125363050931728

631422004064571305

275802307665183351

995689139748137504

926429605010013651

980186945639498

(или какому-нибудь другому подходящему, не менее внушительному по величине числу). Это число, без сомнения, выглядит устрашающе большим! Оно, действительно, чрезвычайно велико, но я не вижу способа, как его можно было бы сделать меньше. Процедуры кодирования и определения, использованные мною для машин Тьюринга, вполне разумны и достаточно просты, и все же с неизбежностью приводят к подобным несуразно большим числам для реальной универсальной машины Тьюринга[48].

Я уже говорил, что все современные общеупотребительные компьютеры, по сути, являются универсальными машинами Тьюринга. Я ни в коем случае не подразумеваю под этим, что их логическая структура должна в точности походить на предложенную мной выше структуру универсальной машины Тьюринга. Однако суть дела состоит в том, что если сперва ввести в произвольную универсальную машину Тьюринга соответствующую программу (начало подаваемой на вход ленты), то потом она сможет копировать поведение любой машины Тьюринга! В предыдущем примере программа просто принимает форму одного числа (числа n ), но этим разнообразие возможных процедур и вариантов исходной схемы Тьюринга отнюдь не исчерпывается. В действительности я сам, описывая машину, несколько отклонился от того, что исходно было предложено Тьюрингом. Но ни одно из этих отклонений не имеет сейчас для нас существенного значения.

Неразрешимость проблемы Гильберта

Мы теперь вплотную подходим к той цели, ради которой Тьюринг с самого начала разрабатывал свою теорию — получить ответ на вопрос, заключенный в общей проблеме алгоритмической разрешимости, поставленной Гильбертом, а именно: существует ли некая механическая процедура для решения всех математических задач, принадлежащих к некоторому широкому, но вполне определенному классу? Тьюринг обнаружил, что он мог бы перефразировать этот вопрос следующим образом: остановится ли в действительности n-я машина Тьюринга, если на ее вход поступит число m Эта задача получила название проблемы остановки. Не так сложно составить список команд, для которых машина никогда не остановится при любом m (как, например, в случаях n = 1 или 2, рассмотренных в предыдущем разделе, а также во всех случаях, когда вообще отсутствует команда STOP ). Точно так же существует множество списков команд, для которых машина будет останавливаться всегда, независимо от вводимого числа m (например, T11 ). Кроме того, некоторые машины при работе с одними числами останавливались бы, а с другими — нет. Совершенно очевидно, что алгоритм, который никогда не прекращает работу, бесполезен. Это, собственно, и не алгоритм вовсе. Поэтому важно уметь ответить на вопрос, приведет ли когда-нибудь работа машины Tn над данным числом m к какому-то ответу или нет! Если нет (т. е. процесс вычисления никогда не прекращается), то я буду выражать это следующей записью:

Tn(m ) = □.

(Сюда же включены машины, которые в ходе работы попадают в ситуацию, когда нет команды, определяющей их дальнейшее поведение, как это было в случае рассмотренных выше фиктивных машин T4 и T1. К сожалению, наша на первый взгляд работоспособная машина T3 должна теперь также считаться фиктивной, т. е.

T3(m ) = □, поскольку результатом ее действия всегда будет просто пустая лента, тогда как нам, чтобы приписать номер полученному ответу, нужна хотя бы одна единица на выходе! Машина T11, однако, совершенно полноправна, поскольку она производит единственную 1. Результатом ее работы будет лента с номером 0, так что T11(m ) = 0 для любого m.)

В математике весьма важно иметь возможность установить момент, когда машина Тьюринга остановится. Рассмотрим для примера уравнение

(х + 1)ω+3 + (у + 1)ω+3 = (z + 1)ω+3.

(Не пугайтесь, даже если Вы не любите вникать в детали математических вычислений. Это уравнение используется здесь только в качестве примера, и от вас не требуется его глубокого понимания.) Это конкретное уравнение относится к известной (возможно, самой известной) и пока нерешенной математической проблеме. Проблема формулируется следующим образом: существует ли какой-либо набор х, у, z, ω, для которого это равенство выполняется. Знаменитое утверждение, записанное на полях «Арифметики» Диофанта великим французским математиком семнадцатого столетия Пьером де Ферма (1601–1665) и известное как «последняя теорема Ферма», гласит, что это равенство никогда не выполняется[49][50]. Будучи адвокатом по профессии, Ферма тем не менее был искуснейшим математиком своего времени. (Ферма был современником Декарта.) В своей записи он утверждал, что знает «воистину прекрасное доказательство» своей теоремы, но поля книги слишком малы, чтобы его привести. До сегодняшнего дня никому так и не удалось ни воспроизвести это доказательство[51], ни найти опровергающий это утверждение пример!

Очевидно, что для заданной четверки чисел (x, у, z, ω ) выяснить, выполняется это равенство или нет, можно простым вычислением. Значит, мы можем представить себе вычислительный алгоритм, который последовательно перебирает все возможные четверки чисел одну за другой и останавливается только тогда, когда равенство удовлетворяется. (Мы уже знаем, что для конечных наборов чисел существуют способы их кодирования на ленте вычислимым способом, а именно, в виде одного числа. Таким образом, перебор всех четверок можно провести, просто следуя естественному порядку соответствующих им одиночных чисел.) Если бы мы могли установить, что этот алгоритм никогда не останавливается, то это стало бы доказательством утверждения Ферма.

Сходным образом в терминах проблемы остановки машины Тьюринга можно перефразировать многие другие нерешенные математические проблемы. Примером такого рода проблем может служить так называемое предположение Гольдбаха: любое четное число, большее двух, может быть представлено в виде суммы двух простых чисел[52]). Процесс, с помощью которого можно установить, относится некоторое натуральное число к простым или нет, является алгоритмическим, поскольку достаточно проверить делимость данного числа на все числа, меньшие его, а это достигается с помощью конечного числа вычислительных операций. Мы можем придумать машину Тьюринга, которая перебирает четные числа 6, 8, 10, 12, 14…, пробуя все возможные способы разбиения их на пары нечетных чисел

6 = 3 + 3, 8 = 3 + 5, 10 = 3 + 7 = 5 +5,

12 = 5 + 7, 14 = 3 + 11=7 + 7…

и убеждаясь, что для каждого четного числа какое-то из разбиений образовано двумя простыми числами. (Очевидно, нам не надо проверять пары четных слагаемых, кроме 2 + 2, поскольку все простые числа за исключением 2 — нечетные.) Наша машина должна остановиться только в том случае, если она находит четное число, для которого ни одно из разбиений не является парой простых чисел. В этом случае мы получили бы контрпример к предположению Гольдбаха, т. е. нашли бы четное число, большее 2, которое не является суммой двух простых чисел. Следовательно, если бы мы могли установить, останавливается машина Тьюринга когда-нибудь или нет, то тем самым мы выяснили бы, справедливо предположение Гольдбаха или нет.

Перейти на страницу:

Пенроуз Роджер читать все книги автора по порядку

Пенроуз Роджер - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


Новый ум короля: О компьютерах, мышлении и законах физики отзывы

Отзывы читателей о книге Новый ум короля: О компьютерах, мышлении и законах физики, автор: Пенроуз Роджер. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*