Kniga-Online.club
» » » » Дэйв Голдберг - Вселенная.Руководство по эксплуатации

Дэйв Голдберг - Вселенная.Руководство по эксплуатации

Читать бесплатно Дэйв Голдберг - Вселенная.Руководство по эксплуатации. Жанр: Физика издательство -, год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

А как же магнетизм? Если не считать магнитных нашлепок на холодильнике, в повседневной жизни мы с ним вроде бы и не сталкиваемся. Зато он играет крайне важную роль в ускорителях частиц. Когда заряженная частица (например, протон) находится в магнитном поле, она движется по круглой орбите. Чем сильнее магнитное поле, тем быстрее движение по орбите. Бели поставить в кольцо БАК набор магнитов, то можно будет ловить протонный луч на скорости, близкой к скорости света.

Электромагнетизм — это как теннис. Эта игра гораздо динамичнее многих других, а маленькие пушистенькие желто-зеленые мячики (фотоны) ударяют с такой силой, что только держись. Нейтральные частицы в эту игру не берут, потому что фотоны их «не видят» и потому что они, как всегда, забыли ракетку у мамы дома.

Играть в электромагнетизм могут любые заряженные частицы.

Сильное взаимодействие

Мы были вынуждены ознакомить вас с электромагнетизмом, поскольку существуют наблюдаемые феномены наподобие существования молекул и атомов, которые гравитацией не объяснишь. Однако гравитация и электромагнетизм, даже в сочетании, не в силах объяснить всего.

Рассмотрим гелий. Он состоит из двух нейтронов и двух протонов. Что касается электромагнетизма, нейтроны в этой игре не участвуют, а вот протоны крайне, крайне, крайне не любят общества друг друга. Только представьте себе — в ядре каждого атома гелия электрическая сила отталкивания между протонами составляет около 22,5 килограмма! Почему же гелий не разрывается в клочки под воздействием своего же электромагнитного отталкивания?

Значит, должна быть еще одна сила, которая действует и на протоны, и на нейтроны и заставляет их держаться вместе. Эта сила называется сильным, взаимодействием и действует лишь на очень-очень маленьких масштабах — около 10-15 метра. Чтобы вам не казалось, что мы жонглируем цифрами, и вы поняли, что это за масштаб, отметим, что размер атомного ядра по сравнению с вашим ростом — это все равно что ваш рост по сравнению с расстоянием до альфы Центавра.

Однако кроличья нора на поверку оказывается еще глубже. В 1960-х годах в ходе эксперимента по глубоко неупругому рассеянию в Стэнфордском линейном ускорителе ученые стреляли в атомы высокоэнергичными электронами. Получившийся рикошет показал, что внутри протонов и нейтронов есть что-то еще — протоны и нейтроны нельзя считать фундаментальными частицами, они состоят из чего-то еще более мелкого. Эти мелкие частички получили название кварков.

Кварки, как и электроны и нейтрино,— последние игроки в нашей метафизической игре. Существует шесть разновидностей кварков (их славные мордашки вы увидите в приложении к этой главе), а пока что нас интересуют только две: u-кварк (с электрическим зарядом в +2/3) и d-кварк (с электрическим зарядом в -1/3). В протонах содержится два u-кварка и d-кварк*, а в нейтронах — два d-кварка и u-кварк**.

*и + и + d = 2/3 + 2/3 - 1/3 = 1. Складываем заряды кварков и получаем заряд протона. Круто, правда?

**Вычисления проделайте сами.

Скрепляет их сильное взаимодействие. На самом деле сильное взаимодействие настолько сильно, что вне протонов и нейтронов кварки не встречаются.

Сильное взаимодействие очень похоже на пинг-понг. Это напряженный поединок в небольшом замкнутом пространстве. В игры с сильным взаимодействием играют только кварки (и протоны с нейтронами, которые состоят из кварков).

Слабое взаимодействие

Когда мы знакомили вас с сильным взаимодействием, то заявили, что нам приходится это делать, потому что существуют загадочные явления, которые невозможно объяснить при помощи двух других сил (гравитации и электромагнетизма). Об одном таком мы уже говорили — это распад нейтрона. Мы сказали, что нейтрон, предоставленный сам себе, распадается на протон, электрон в антинейтрино. Попробуйте-ка объяснить это при помощи одной из сил, о которой мы уже говорили!

Придется нам изобрести (ладно, хорошо, гипотетически выдвинуть) еще одну силу. Задействовав все имеющиеся в нашем распоряжении творческие способности, мы титаническим усилием выдумываем слабое взаимодействие. Слабое взаимодействие характерно в основном для нейтрино, поскольку, раз они нейтральны, они уж точно не умеют играть в электромагнетизм, а в сильное взаимодействие играют только кварки. Как выяснилось, нейтрино и электроны очень похожи, за исключением небольших различий в заряде, и слабое взаимодействие, среди прочего, позволяет нейтрино превращаться в электроны и наоборот. Каждую секунду сквозь вас проходят триллионы нейтрино. Солнце производит их квадрильонами, и все же гигантские детекторы засекают лишь несколько нейтрино в день. Редкость — верный признак того, что слабое взаимодействие не зря получило такое название. А поскольку нейтрино взаимодействуют только посредством слабого взаимодействия, нам и не удается наблюдать их часто.

Слабое взаимодействие очень похоже на бросание тяжелого гимнастического мяча. Летит он очень недалеко, бьет несильно и за типичное время успевает неимоверно надоесть. Вообще-то нам уже намекнули, почему это так скучно. Гимнастический мяч очень тяжелый, и даже атлеты-силачи легендарных времен не могли бросить его достаточно далеко.

В слабое взаимодействие играют кварки, нейтрино и электроны. Поскольку, как мы уже сказали, их очень много и все лезут поучаствовать, игра идет очень медленно, и ничего особенно интересного не происходит.

IV. Откуда же берутся эти силы?

Наш разговор мы начали с того, что фундаментальные силы похожи на игры, однако в нашей игре не хватает одного компонента, без которого ничего не получится: это мяч. Задумайтесь об этом. Без мяча теннис — не более чем конвульсивное размахивание ракеткой. То же самое можно сказать и о физике частиц. По состоянию наших знаний на сегодня, если положить два электрона на стол, они так и будут лежать. Взаимодействуют они только через электромагнитное (или слабое, или гравитационное) поле. Так что без поля они друг друга не увидят.

- Откуда же берется поле? Две частицы должны как-то известить друг друга о своем присутствии. Это можно сделать, «послав» от одной к другой третью частицу. Этот посланец — или переносчик взаимодействия — и есть частица, которая на самом деле несет в себе силу. Два электрона посылают туда-сюда векую частицу с сообщением: «Вот он я, вали отсюда!»58

*А иногда, очень редко: «Как ты думаешь, я привлекательный?» На что следует печальный вселенский ответ: «НЕТ!»

Частица-переносчик в электромагнетизме называется фотоном, и мы уже уделили беседе о нем довольно много времени в главе 2. Мы уже знаем, что фотоны лишены массы и двигаются со скоростью света. Вследствие наводняющей Вселенную энергии вакуума все мы по уши в фотонах, которые то появляются, то исчезают.

Как мы видели, в зависимости от обстоятельств свет можно считать частицей или волной. В более общем смысле волна — это такое поле, что-то такое, что наблюдается везде во времени и пространстве. Если вы возьмете антенну и обойдете с ней весь дом, то везде засечете радиосигналы: где-то слабее, где-то сильнее. Это и есть электромагнитное поле. Фотон — это всего лишь кусочек электромагнитного поля, который летит через пространство со скоростью света. То же самое можно сказать обо всех фундаментальных силах. Существует сильное поле, слабое поле, гравитационное поле, я у каждого есть своя соответствующая частица.

Переносчики сильного ядерного взаимодействия называются глюонами. Глюоны, как и фотоны, лишены массы и двигаются со скоростью света, однако, в отличие от фотонов, подвержены тревожным состояниям, связанным с сепарацией. Фотон — носитель электромагнитной силы, но сам по себе он электрически нейтрален. То есть сам он и не чувствует электромагнитной силы.

Частицы, которые испытывают на себе сильное взаимодействие, обладают зарядом иного рода — «цветом». «Сильные» аналоги отрицательного и положительного зарядов в мире электромагнетизма — это красный, синий и зеленый заряды, которые определяют взаимодействия, возникающие между кварками в сильном поле. Если вы собрались бежать за цветными карандашами, чтобы рисовать Сильные взаимодействия, повремените. Это просто очередные придурковатые жаргонные названия, которые физики придумали, чтобы сбить с толку непосвященных.

Перейти на страницу:

Дэйв Голдберг читать все книги автора по порядку

Дэйв Голдберг - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


Вселенная.Руководство по эксплуатации отзывы

Отзывы читателей о книге Вселенная.Руководство по эксплуатации, автор: Дэйв Голдберг. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*