Kniga-Online.club
» » » » Александр Петров - Гравитация. От хрустальных сфер до кротовых нор

Александр Петров - Гравитация. От хрустальных сфер до кротовых нор

Читать бесплатно Александр Петров - Гравитация. От хрустальных сфер до кротовых нор. Жанр: Физика издательство -, год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

Эти уравнения были построены и представлены Эйнштейном в работах 1915 и 1916 годов на основании аргументов изложенных выше. Практически одновременно они были представлены немецким математиком Давидом Гильбертом (1862–1943). Научные интересы Гильберта во многом были связаны с математической физикой. С большим интересом он следил за попытками Эйнштейна создать общую теорию относительности, основанными на логике анализа физических явлений. Это вдохновило его на поиски строгого математического подхода к построению уравнений, которые и были выведены из, так называемого, принципа наименьшего действия. В общем, Гильберт имел планы «заковать физику» в рамки аксиоматического подхода. Но несмотря на впечатляющие результаты в построении уравнений гравитации, этот глобальный замысел Гильберта не удался. До сих пор ведутся споры о приоритете, однако мы считаем, что одни исследования дополняют другие. Если можно так сказать, то Эйнштейн проник в самую глубину физических явлений, а Гильберт дал аппарат, позволяющий исследовать их более эффективно.

Логика построения уравнений Эйнштейна и их конкретный формальный вид даны в Дополнении 3, а здесь мы разъясним основные понятия ОТО, к которым будем часто обращаться в основном тексте. Вернемся к понятию интервала, который был введен для пространства Минковского. В отличие от плоского пространства, в искривленном пространстве-времени расстояние между двумя мировыми точками в общем случае невозможно определить как конечную длину отрезка прямой. Необходимо перейти к измерениям в малой окрестности мировой точки (к бесконечно малым величинам). Тогда квадрат интервала пространства Минковского между двумя бесконечно близкими точками перепишется как квадрат элемента интервала (уже бесконечно малой величины) в виде:

ds2 = c2dt2 – dx2 – dy2 – dz2.

Элемент пространства Минковского имеет такой простой вид еще и потому, что здесь используются координаты Лоренца, то есть декартовы координаты в совокупности с временной координатой. Этот же квадрат элемента интервала (часто его все равно называют «интервал») может быть записан в более формальном виде:

ds2 = ηabdxadxb.

Здесь a, b = 0, 1, 2, 3; а нулевой координате обычно приписывают смысл временной, умноженной на скорость света: x0 = ct. Величина ηab является диагональной (отличны от нуля только элементы на диагонали) матрицей 4 × 4,

и называется метрикой Минковского. Формальная запись интервала перейдет в уже привычную, если использовать простое правило суммирования по повторяющимся индексам, например: mana = m0n0 + m1n1 + m2n2 + m3n3. Метрика ηab задает способ измерения расстояний в пространстве Минковского в лоренцевых координатах.

Давайте «искривим» координаты (сделаем их произвольное преобразование), тогда интервал примет вид:

ds2 = gabdxadxb.

Величина gab также называется метрикой и фактически задает способ измерения расстояний в пространстве Минковского, но в тех координатах, в которых она определена.

Важно отметить, что элемент ds, так же как и сам интервал, инвариантная величина, то есть его значение остается тем же в любых координатах. Метрика gab – это тоже матрица 4 × 4, но теперь в общем случае она уже не диагональна, ее компоненты g00, g01, g11, g12 могут быть какими-либо функциями времени и пространственных координат, см. Дополнение 1.

В искривленном пространстве-времени способ измерения расстояний между мировыми точками такой же, как в плоском в криволинейных координатах – с помощью элемента интервала. Разница в том, что для пространства Минковского возможен переход от gab к простому диагональному виду ηab во всем пространстве-времени, а для искривленного – нет. Однако в малой окрестности отдельного свободно падающего наблюдателя такой переход возможен. Ведь согласно слабому принципу эквивалентности он ощущает себя в инерциальной системе отсчета! Искривление не позволяет связывать мировые точки прямыми, поэтому мировые линии (геодезические или нет), соединяющие события, будут в общем случае кривыми. Их длина вычисляется с помощью бесконечно малых элементов интервала и последующего интегрирования.

Как элемент интервала, так и длина мировых линий (их полный интервал), также являются инвариантными по отношению к преобразованиям координат.

Пространственно-временные измерения и фиксация метрических свойств осуществляются также с помощью света. Скорость света не зависит от скорости излучателей, а для каждого локального наблюдателя, измеренная в его собственной системе отсчета, имеет одно и то же стандартное значение c. При измерениях самым важным является то, что для света элемент интервала ds в силу инвариантности всегда равен нулю.

Если в наше время спросить даже не самого сведущего, но все-таки образованного, человека: уравнения Эйнштейна – это уравнения чего? С большой вероятностью получишь ответ, что это уравнения гравитационного поля. А что такое гравитационное поле мы фактически только что рассказали – это поле метрики gab, или метрического тензора.

Именно это поле дает возможность построить величины, определяющие искривление пространства-времени. Тензорное поле определяется аналогично тому, как определяются скалярное и векторное поля. Задать поле метрического тензора означает, что в каждой мировой точке пространства-времени нужно задать набор функций, каждая из которых соответствует одной из компонент матрицы, представляющей этот тензор.

Решить уравнения Эйнштейна – это значит найти коэффициенты gab. Но гравитационные уравнения должны решаться вместе с уравнениями для материи, состояние и движение которой также должны стать известными, как результат найденного решения. Также часто решают гравитационные уравнения в вакууме, то есть для областей пространства-времени, где нет материи. Тогда задачей является определить только метрику gab, анализ которой даст всю информацию об искривлении пространства-времени, его геодезических и т. д. Решение уравнений ОТО с бо́льшими деталями обсуждается в Дополнении 4.

После того как решение уравнений ОТО найдено, необходимо обратиться к принципам соответствия, которые были определены в конце предыдущего параграфа. Первый из них касается соответствия теории гравитации Ньютона. Принцип звучит четко и довольно жестко. Но так и должно быть, если мы не хотим ошибиться в интерпретации решений новой теории. Теория Ньютона в данном случае играет роль критерия.

Уже сейчас очень полезно для последующего изложения записать простые формулы этого соответствия. Мы уже говорили, что гравитация Ньютона представлена скалярным полем (потенциалом) φ. Для точечной массы M (или сферически распределенного вещества) скалярное поле вне вещества определяется как φ= – GM/r, где r – расстояние до центра тела. Тогда сила, действующая на тело массы m в этом потенциальном поле, определяется стандартной формулой закона всемирного тяготения:

Движение тел в таком поле хорошо изучено. Как найти соответствие с движением тел в ОТО? Для этого нужно найти пространство-время, геодезические которого, в приближении малых скоростей и слабого поля φ, соответствуют движению тел в теории Ньютона. Такое пространство-время легко находится, его метрика в обсуждаемом приближении имеет в сферических координатах простую форму:

В силу сферической симметрии мы опустили угловую часть, оставив только временную и радиальную. Эту метрику иногда называют метрикой «пространства-времени Ньютона». Здесь g00 = 1 + 2j/c2 = 1–2GM/rc2. Если нет тяготеющего центра, т. е. масса M = 0, то поле φ исчезает и метрика обращается в метрику пространства Минковского.

Этим мы отметили соответствие для движения тел в теории Ньютона и ОТО. Но также необходимо показать, что для слабых гравитационных полей и малых скоростей уравнения релятивистской теории гравитации должны перейти в уравнения гравитации Ньютона. Но что такое уравнения тяготения Ньютона? Очевидно, что это должны быть уравнения для поля φ. Здесь приходится идти обратным путем. Мы знаем, какое поле создается каждой отдельной частицей. Если у нас имеется произвольное распределение плотности вещества ρ в пространстве, то для каждой точки нужно выписать соответствующее значение φ. А общее поле Φ в каждой точке пространства просто сложится из всех отдельных φ. Тогда получится, что поле Φ в каждой точке удовлетворяет уравнению:

Перейти на страницу:

Александр Петров читать все книги автора по порядку

Александр Петров - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


Гравитация. От хрустальных сфер до кротовых нор отзывы

Отзывы читателей о книге Гравитация. От хрустальных сфер до кротовых нор, автор: Александр Петров. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*