Стивен Вайнберг - Мечты об окончательной теории: Физика в поисках самых фундаментальных законов природы
Так разве непонятно, почему ОТО вытеснила ньютоновскую теорию тяготения? Новая теория объяснила одну давно известную аномалию, дополнительную прецессию Меркурия, и затем предсказала новый поразительный эффект – отклонение луча света Солнцем. Чего же еще?
Конечно, аномальная прецессия Меркурия и отклонение луча света были очень важной частью всей этой истории. Но, как всегда бывает в истории науки (а я подозреваю, что и в истории чего угодно), вся простота проблемы испаряется, если присмотреться к ней повнимательнее.
Рассмотрим расхождение между ньютоновской теорией и наблюдаемым движением Меркурия. Даже если мы ничего не знаем об ОТО, разве это расхождение не указывает нам вполне ясно, что что-то неладно с ньютоновской теорией тяготения? Совсем не обязательно. Любая теория вроде ньютоновской теории тяготения имеет такое огромное количество приложений, что все время сталкивается с какими-то экспериментальными аномалиями. Не существует теории, которая не противоречила бы какому-нибудь эксперименту. На протяжении всей своей истории ньютоновская теория Солнечной системы противоречила разным астрономическим наблюдениям. К 1916 г. в число таких расхождений входили не только аномальная прецессия орбиты Меркурия, но и аномалии в движении комет Галлея и Энке, а также в движении Луны. Во всех этих случаях реальное поведение тел не объяснялось ньютоновской теорией. Сейчас мы знаем, что объяснение аномалий в движении комет и Луны не имеет никакого отношения к основам теории тяготения. Кометы Галлея и Энке ведут себя не так, как следует из вычислений с помощью ньютоновской теории, потому что никто не знает, как правильно учесть в этих вычислениях то давление, которое оказывают газы, вылетающие из ядра движущейся по орбите кометы, когда она нагревается, проходя близко от Солнца. Аналогично, движение Луны очень сложно, так как Луна все-таки довольно большое тело и поэтому она подвержена влиянию разного рода сложных приливных сил. Оглядываясь назад, мы не должны удивляться, что при применении ньютоновской теории к этим явлениям возникли расхождения. Кроме того, было несколько предложений, как можно было бы объяснить аномалию в движении Меркурия в рамках ньютоновской теории. Одна из возможностей, серьезно обсуждавшихся в начале века, заключалась в том, что между Меркурием и Солнцем якобы имеется какое-то вещество, слегка искажающее гравитационное поле Солнца. Заметим, что ни одно из расхождений между теорией и экспериментом, образно говоря, не вскакивает, не размахивает флагом и не кричит: «Я самое важное расхождение!» Ученый конца XIX и начала ХХ вв., критически рассматривавший все данные, не мог с уверенностью прийти к выводу, что в какой-то из известных аномалий в Солнечной системе есть что-то особо важное. Нужна была теория, которая могла бы объяснить, какое же из наблюдений важно на самом деле.
Как только в 1915 г. Эйнштейн показал, что расчет дополнительной прецессии орбиты Меркурия с помощью ОТО приводит к наблюдаемому значению в 43 угловые секунды за сто лет, это сразу же явилось, конечно, серьезным свидетельством в пользу теории. На самом деле, как я поясню ниже, к этому свидетельству следовало бы отнестись еще более серьезно. Может быть, из-за обилия других возможных возмущений орбиты Меркурия, может быть, из-за сомнений в ценности теорий, подтверждаемых уже существующими данными, а может быть, просто из-за того, что шла война, но так или иначе успешное объяснение Эйнштейном прецессии Меркурия нельзя и рядом поставить с тем воздействием, которое оказало сообщение экспедиции 1919 г. по изучению солнечного затмения, подтвердившей эйнштейновское предсказание отклонения луча света Солнцем.
Обратимся к этому явлению. Начиная с 1919 г., во время ряда затмений астрономы продолжали проверять предсказание Эйнштейна. Такие затмения наблюдались в Австралии в 1922 г., на острове Суматра в 1929 г., на территории СССР в 1936 г. и в Бразилии в 1947 г. Результаты некоторых наблюдений, похоже, находились в согласии с эйнштейновской теорией, но были и такие, которые существенно с ней расходились. И хотя экспедиция 1919 г. на основе наблюдения дюжины звезд сообщила о 10%-й экспериментальной погрешности в измерении отклонения и о том, что наблюдения согласуются с предсказаниями теории Эйнштейна с такой же 10%-й точностью, некоторые последующие экспедиции не смогли достичь этой точности, несмотря на то, что наблюдали много больше звезд. Правда, затмение 1919 г. было особенно удобным для таких наблюдений. И все же я склонен считать, что астрономы из экспедиции 1919 г. при анализе своих данных были охвачены чрезмерным энтузиазмом в отношении ОТО.
Действительно, многие ученые того времени скептически относились к данным, полученным во время затмения 1919 г. В докладе Нобелевскому комитету в 1921 г.[72] Сванте Аррениус упоминал многочисленную критику обнародованных результатов по измерению отклонения лучей света. Однажды в Иерусалиме я встретил престарелого профессора Самбурского, который в 1919 г. был коллегой Эйнштейна в Берлине. Он рассказал мне, что астрономы и физики в Берлине весьма сомневались в том, что британским астрономам удалось на самом деле осуществить столь аккуратную проверку теории Эйнштейна.
Я и в мыслях не могу допустить, что в эти наблюдения вкрался какой-то сознательный обман. Вы только представьте себе все те неопределенности, с которыми вы сталкиваетесь, пытаясь измерить отклонение луча света Солнцем. Вы наблюдаете звезду, находящуюся на небе рядом с солнечным диском в тот момент, когда Солнце заслоняется Луной. Вы должны сравнить положение звезды на двух фотопластинках, сделанных с интервалом в шесть месяцев. Во время этих двух наблюдений телескоп может быть чуть по-разному сфокусирован. Сами фотопластинки могут быть чуть передержаны или недодержаны. И так далее. Как и в любом другом эксперименте, необходимо учитывать все мыслимые поправки. Астрономы вносят эти поправки, опираясь на имеющиеся у них знания. Но когда знаешь ответ, возникает естественное желание вносить поправки лишь до тех пор, пока не получится «правильное» значение, а затем перестать искать другие поправки. Так, астрономов из экспедиции 1919 г. обвиняли в подгонке[73] за то, что они отбросили данные, полученные с одной из фотопластинок и расходившиеся с теорией Эйнштейна, и списали расхождение на счет изменения фокуса телескопа. Задним числом можно, конечно, сказать, что британские астрономы оказались правы, но я не удивился бы, если бы узнал, что они продолжали искать поправки лишь до тех пор, пока их результат с учетом всех поправок не совпал с теорией Эйнштейна.
Считается общепринятым мнение, что истинной проверкой теории является сравнение ее предсказаний с результатами экспериментов. Однако, оглядываясь назад, можно утверждать, что успешное объяснение Эйнштейном в 1915 г. ранее измеренной аномалии орбиты Меркурия явилось значительно более существенным тестом общей теории относительности, чем проверка его вычислений отклонения света в наблюдениях во время солнечных затмений 1919 г. и далее. Таким образом, в случае общей теории относительности последующее подтверждение, т.е. вычисление уже известного аномального движения Меркурия, оказалось на самом деле более важной проверкой теории, чем предсказание нового эффекта отклонения луча света гравитационными полями[74].
Я думаю, что все так подчеркивают важность предсказания при проверке научных теорий, потому что стандартная точка зрения научных комментаторов заключается в том, чтобы не доверять теоретикам. Все боятся, что теоретик может подогнать свою теорию так, что она будет объяснять любые известные экспериментальные факты. Таким образом, то, что теория объясняет эти факты, не считается убедительным тестом самой теории.
Однако, несмотря на то, что Эйнштейн еще в 1907 г. изучил вопрос об аномальной прецессии орбиты Меркурия, никто из тех, кто хоть немного знает, как строилась общая теория относительности, кто пытался вникнуть в логику Эйнштейна, не может предположить, что он занимался созданием общей теории относительности для того, чтобы объяснить эту прецессию. (Я вернусь через минуту к ходу мыслей Эйнштейна.) Часто следует не доверять именно успешному предсказанию. Правда, что в случае настоящего предсказания, вроде эйнштейновского предсказания отклонения лучей света Солнцем, теоретик не знает никаких экспериментальных данных, строя свою теорию. Но с другой стороны, экспериментатор знает теоретический результат до того, как он начинает эксперимент. А это может привести, и, как показывает история науки, приводило к искажениям из-за чрезмерного доверия к вычислениям, сделанным задним числом. Я повторяю: экспериментаторы не фальсифицируют свои данные. Насколько мне известно, в истории физики не было случая, чтобы какие-то важные данные сознательно искажались. Но если экспериментаторы знают тот результат, который они теоретически ожидают получить, то им, естественно, очень трудно прекратить поиски ошибок наблюдения, если этот результат не получается, или, наоборот, продолжать такие поиски, если обнаружено совпадение с предсказанием. То, что экспериментаторы все же не всегда получают те результаты, которые ожидают, свидетельствует о силе их характера.