Kniga-Online.club
» » » » Ричард Фейнман - 8a. Квантовая механика I

Ричард Фейнман - 8a. Квантовая механика I

Читать бесплатно Ричард Фейнман - 8a. Квантовая механика I. Жанр: Физика издательство неизвестно, год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

§ 6. Обобщение на системы с N состояниями

Мы покончили с системами с двумя состояниями, рассказав все, что хотелось. В дальнейших главах мы перейдем к изуче­нию систем с большим числом состояний. Расширение на систе­мы с N состояниями идей, разработанных для двух состояний, проходит довольно просто. Это делается примерно так.

Если система обладает N различными состояниями, то всякое состояние |y(t)>можно представить как линейную комбина­цию произвольной совокупности базисных состояний |t>, где i=l, 2, 3, . . ., N:

Коэффициенты Ci(t) это амплитуды <i|y(t)>. Поведение амплитуд Сiво времени направляется уравнениями

где энергетическая матрица Hijописывает физику задачи. С виду она такая же, как и для двух состояний. Но только теперь и i, и j должны пробегать по всем N базисным состоя­ниям, и энергетическая матрица Hij(или, если вам больше нравится, гамильтониан) — это теперь матрица NXN, состоя­щая из N2чисел. Как и прежде, Hij=Hji (до тех пор, пока частицы сохраняются) и диагональные элементы Hiiсуть ве­щественные числа.

Мы нашли общее решение для всех С в системе с двумя со­стояниями, когда энергетическая матрица постоянна (не зави­сит от t). Точно так же нетрудно решить и уравнение (9.58) для системы с N состояниями, когда Н не зависит от времени. Опять мы начинаем с того, что ищем возможное решение, в кото­ром у всех амплитуд зависимость от времени одинакова. Мы про­буем

Если все эти Ciподставить в (9.58), то производные dCi(t)/dt превращаются просто в (-i/h)ECi. Сокращая повсюду на общую экспоненту, получаем

Эта система N линейных алгебраических уравнений для N неизвестных a1 а2, . . ., аn;решение у нее бывает только тогда, когда вам сильно повезет, когда определитель из коэффициентов при всех а равен нулю. Но не нужно чересчур умничать: можете просто начать их решать любым способом, и вы сразу увидите, что решить их удается лишь при некоторых значениях E. (Вспомните, что единственная величина, которая в этих уравне­ниях подлежит подгонке, это Е.)

Если, впрочем, вы хотите, чтобы все было по форме, пере­пишите (9.60) так:

Затем примените правило (если оно вам знакомо), что эти урав­нения будут иметь решения лишь для тех значений Е, для кото­рых

Каждый член в детерминанте — это просто Hijи только из диагональных отнято Е. Иначе говоря, (9.62) означает просто

Это, конечно, всего-навсего особый способ записывать алгебраи­ческие уравнения для Е, складывая вереницы членов, пере­множаемых в определенном порядке. Эти произведения дадут все степени Е вплоть до EN.

Значит, у нас есть многочлен N-йстепени, который равняется нулю. У него, вообще говоря, есть N корней. (Нужно помнить, однако, что некоторые из них могут быть кратными корнями; это значит, что два или более корней могут быть равны друг другу.) Обозначим эти N корней так:

(пусть n обозначает n-е порядковое числительное, так что n принимает значения I,II, . . ., N). Некоторые из этих энергий могут быть между собой равны, скажем ЕIIIII, но мы решили все же обозначать их разными именами.

Уравнения (9.60) или (9.61) имеют по одному решению для каждого значения Е [из (9.64)]. Если вы подставите любое из Е, скажем En, в (9.60) и найдете все аi, то получится ряд чисел аi, относящихся к энергии En . Этот ряд мы обозначим аi (n).

Если подставить эти аi (n) в (9.59), то получатся амплитуды Сi(n) того, что состояния с определенной энергией находятся в базисном состоянии |i>. Пусть |n> обозначает вектор состоя­ния для состояния с определенной энергией при t=0. Тогда можно написать

где

Полное состояние с определенной энергией |yn(t)> можно тогда записать так:

или

Векторы состояний |n> описывают конфигурацию состояний с определенной энергией, но с вынесенной зависимостью от вре­мени. Это постоянные векторы, которые, если мы захотим, можно использовать в качестве новой базисной совокупности.

Каждое из состояний |n> обладает тем свойством (в чем легко убедиться), что при действии на него оператором Гамиль­тона Н получится просто Еn , умноженное на то же состояние:

Значит, энергия Еn это характеристическое число опера­тора Гамильтона Н^. Как мы видели, у гамильтониана в об­щем случае бывает несколько характеристических энергий. Фи­зики обычно называют их «собственными значениями» мат­рицы Н. Для каждого собственного значения Н^, иными словами, для каждой энергии, существует состояние с определенной энергией, которое мы называли «стационарным». Состояния |n> обычно именуются «собственными состояниями Н^». Каждое собственное состояние отвечает определенному собственному значению Еn.

Далее, состояния |n> (их N штук) могут, вообще говоря, тоже быть выбраны в качестве базиса. Для этого все состояния должны быть ортогональны в том смысле, что для любой нары их, скажем |n> и |m),

<n|m>=0. (9.68)

Это выполнится автоматически, если все энергии различны. Кроме того, можно умножить все аi(n) на подходящие множи­тели, чтобы все состояния были отнормированы: чтобы для всех n было

<n|n>=1. (9.69)

Когда оказывается, что (9.63) случайно имеет два (или боль­ше) одинаковых корня с одной и той же энергией, то появляются небольшие усложнения. По-прежнему имеются две различные совокупности аi, отвечающие двум одинаковым энергиям, но состояния, которые они дают, не обязательно ортогональны. Пусть вы проделали нормальную процедуру и нашли два стацио­нарных состояния с равными энергиями. Обозначим их |m>и |v>. Тогда они не обязательно окажутся ортогональными: если вам не повезло, то обнаружите, что

<m|v>№0.

Но зато всегда верно, что можно изготовить два новых состоя­ния (обозначим их | m'> и |v'>) с теми же энергиями, но орто­гональных друг другу:

<m'|v'>=0. (9.70)

Этого можно добиться, составив |m'> и |v'> из подходящих линейных комбинаций |m> и |v> с так подобранными коэффи­циентами, что (9.70) будет выполнено. Это всегда полезно де­лать, и мы будем вообще предполагать, что это уже проделано, так что можно будет считать наши собственноэнергетические состояния | n> все ортогональными.

Для интереса докажем, что когда два стационарных состоя­ния обладают разными энергиями, то они действительно ортого­нальны. Для состояния |n> с энергией Еn

Это операторное уравнение на самом деле означает, что имеется соотношение между числами. Если заполнить недостающие части, то оно означает то же самое, что и

Проделав здесь комплексное сопряжение, получим

Теперь вспомним, что комплексно сопряженная амплитуда — это амплитуда обратного процесса, так что (9.73) можно пе­реписать в виде

Поскольку это уравнение справедливо для всякого i, то его можно «сократить» до

Это уравнение называется сопряженным с (9.71).

Теперь легко доказать, что Еn число вещественное. Умножим (9.71) на <n|. Получится

Перейти на страницу:

Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


8a. Квантовая механика I отзывы

Отзывы читателей о книге 8a. Квантовая механика I, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*