Kniga-Online.club

Яков Гегузин - Живой кристалл

Читать бесплатно Яков Гегузин - Живой кристалл. Жанр: Физика издательство -, год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

Как и первая, вторая задача решается взглядом на фотографию. На фотографии представлена область скольжения в монокристалле. Видны выходы дислокаций на поверхность, тех самых, которые, перемещаясь, обусловливают взаимное скольжение частей кристалла. Строго говоря, видны, разумеется, не выходы дислокаций на поверхность, а результат растравливания специальным травителем тех мест, где линии дислокаций пересекают поверхность кристалла. В тех местах, которые растравливаются активнее, чем соседние, образуются «ямки травления». Вот они и видны.

Обратимся теперь к третьей задаче. Попробуем ее решить для очень упрощенного случая, а затем, когда получим конечную формулу, полагаю, с удовольствием заметим, что она справедлива и для любого другого случая, отличающегося от упрощенного.

Допустим (и в этом смысл упрощения!), что мы хотим осуществить сдвиг вдоль некоторой плоскости в кристалле, имеющем форму куба с ребром l0, в котором все дислокационные линии лежат в плоскостях, параллельных плоскости сдвига. Допустим, что боковая поверхность кристалла, имеющая площадь l02, пересекается дислокационными линиями, при этом в плоскости скольжения расположено п дислокационных линий. Эти дислокации и будут нас далее интересовать, так как именно они и определяют процесс скольжения вдоль избранной плоскости сдвига. Допустим, что в нашем опыте по сдвигу каждая из дислокационных линий еще не успела пройти путь l0 , а прошла какой-то более короткий путь li . Подвижная часть кристалла относительно неподвижной сместится при этом на расстояние

 

 Назовем эту величину плотностью подвижных дислокаций, обозначим ее ρ0 и запишем полученную формулу в окончательном виде:

ε = ρ0 bli

Удовлетворимся здесь приведенным формальным определением понятия «плотность дислокаций». Подробнее оно обсуждено немного дальше, в очерке о размножении и гибели дислокаций.

Чуть-чуть торжественно подведем итог: мы получили одну из фундаментальных формул теории дислокационного деформирования. Она фундаментальна потому, что входящие в нее величины уже потеряли связь с тем упрощенным примером, с которого мы начинали построение теории и в котором предполагалось, что дислокации движутся лишь в одной плоскости скольжения. Полученная формула этого уже не помнит, так как ρ0 — плотность всех дислокаций, движущихся в любой из возможных плоскостей скольжения.

Воспользуемся формулой для числовой оценки. Допустим, что среднее расстояние между дислокационными линиями ≈ 10-4 см. Это значит, что плотность подвижных дислокаций ρ0 ≈ 108 см-2. Если в опыте дислокации успели сместиться приблизительно на расстояние между ними, то при b ≈ 3.10-8 см величина ε 3.10-4 , т. е. пластическая деформация произойдет на 0,03%. Это ни мало и ни много, а ровно столько, сколько должно быть при такой плотности дислокаций и при таком их смещении.

Из нашей формулы следует еще одно важное соотношение. Если ее левую и правую части поделить на время, в течение которого происходил сдвиг, то мы получим связь между скоростью пластического деформирования и средней скоростью движения дислокаций υ, так как υ = li /t. Эта связь подсказала идею огромного количества стереотипных опытов, которые проводились с различными кристаллами: измеряли скорость пластического деформирования кристалла, плотность дислокаций и вычисляли по этим данным скорость их движения.

Начали мы с обсуждения режима движения гусеницы и ковра со складкой, а окончили фундаментальной формулой теории дислокаций. По дороге, от начала очерка к его концу, логическая цепочка как будто бы не рвалась.

ВОСХОЖДЕНИЕ ДИСЛОКАЦИЙ

О «восхождении» дислокаций теперь пишут в серьезных научных книгах. Видимо, тому ученому, который впервые исследовал перемещение дислокаций с одной плоскости скольжения на другую плоскость, движение дислокации представилось подобным восхождению по ступеням лестницы. Именно этот образ и помог ему понять закономерности «восхождения».

Дислокация умеет перемещаться двумя различными механизмами — «скользить» в плоскости скольжения и «восходить» в направлении, перпендикулярном этой плоскости. Одновременно «скользя» и «восходя», дислокация может двигаться и под произвольным углом к плоскости скольжения. Со скольжением мы знакомы: знаем и о гусенице, и о ковре, и о реальной скользящей дислокации. В этом очерке — о восхождении.

Что происходит, когда краевая дислокация перемещается с данной плоскости скольжения на параллельную? Происходит вот что: незавершенная плоскость, ограниченная дислокационной линией, становится короче на величину расстояния между плоскостями. Произойти это может лишь в случае, если освобождающиеся при этом атомы диффузионно уйдут от дислокационной линии в кристалл. Поэтому для того, чтобы дислокация «восходила», нужно создать условия, при которых атомы будут диффузионно течь по направлению от линии. Впрочем, они могут течь и к линии и пристраиваться к незавершенной плоскости, удлиняя ее. В этом случае дислокация будет восходить в противоположном направлении, скажем так: нисходить.

Итак, дело за малым, надо обеспечить направленный диффузионный поток атомов. Этого можно добиться, прилагая к кристаллу сжимающие или растягивающие напряжения. Если кристалл сжать в направлении, перпендикулярном незавершенной плоскости, — вблизи дислокационной линии, т. е. там, где обрывается незавершенная плоскость, величина напряжений окажется большей, чем вдали от нее. Это означает, что вблизи дислокационной линии концентрация вакансий будет более низкой, чем вдали от нее, и, следовательно, к линии потекут вакансии или, что то же, атомы диффузионно потекут от линии и плоскость будет укорачиваться. В случае растягивающих напряжений все рассуждения обратятся: от линии потекут вакансии, к линии — атомы, плоскость удлиняется. В предыдущих рассуждениях, специально этого не оговорив, мы воспользовались зависимостью концентрации вакансий сυ от напряжений σ: создаем сжимающие напряжения — концентрация вакансий понижается, растягивающие — увеличивается. Установить количественную связь между сυ и величиной и знаком σ — дело не простое, не станем им заниматься. А вот качественно понять, в чем здесь дело, не сложно. Дело в том, что всесторонне сжимаемый кристалл обязан как-то уплотниться, и он это делает, лишаясь части пустоты в виде пустых узлов решетки — вакансий. А растягиваемый кристалл ведет себя диаметрально противоположно: подчиняясь растягивающим напряжениям, которые его вынуждают к увеличению объема, кристалл рождает пустоту в виде дополнительных вакансий. Интуиция подсказывает, что величина изменения концентрации вакансий и величина напряжений должны быть связаны зависимостью Δсυ ~ σ. Скажем, зависимость Δсυ ~ σ2 не может иметь места, так как она означала бы нелепость: Δсυ не зависит от знака σ. Точный расчет подтверждает: зависимость Δсυ ~ σ.

Примитивно процесс диффузионного восхождения дислокации можно проиллюстрировать моделью: колодой скользких карт, одна из которых из колоды частично выдвинута. Если такую колоду сжать, выдвинутая карта выскользнет из нее, а если растянуть, карта упадет в колоду.

Не пытаясь строить теорию восхождения дислокаций, а пользуясь только «общими соображениями», можно полагать, что скорость восхождения определяется величиной диффузионного потока атомов к дислокационной линии или от нее. Это означает, что при неизменном напряжении с ростом температуры скорость восхождения будет увеличиваться так же, как и коэффициент диффузии. И расчеты, и опыты согласно свидетельствуют о том, что при температуре, близкой к температуре плавления металлов, дислокация может восходить со скоростью ≈10- 4 см/с. Это — большая величина! Она означает, что за секунду дислокация пройдет путь ≈10- 4 см и пересечет ≈ 10- 4 / 3.10-8 ≈ 3.103 атомных плоскостей.

За секунду! Именно поэтому восхождение дислокаций проявляется во многих реальных явлениях и процессах, которые происходят при высоких температурах. Расскажу о двух из них.

Перейти на страницу:

Яков Гегузин читать все книги автора по порядку

Яков Гегузин - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


Живой кристалл отзывы

Отзывы читателей о книге Живой кристалл, автор: Яков Гегузин. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*