Kniga-Online.club

Ричард Фейнман - 6a. Электродинамика

Читать бесплатно Ричард Фейнман - 6a. Электродинамика. Жанр: Физика издательство неизвестно, год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

А если частота достаточно высока, то может появиться два

или больше возможных направления распространения волн.

2 В нашем случае это произойдет при l0 <2/3 а. Но вообще-то это может происходить и при l0<а. Эти добавочные волны отве­чают высшим типам волн, о которых мы говорили.

После нашего анализа становится также ясно, отчего фазо­вая скорость волн, бегущих по трубе, превышает с и зависит от со. Когда w меняется, меняется и угол на фиг. 24.16, под ко­торым в пустом пространстве распространяются волны, а вместе с этим меняется и скорость вдоль трубы.

Хотя мы описали волны в волноводе в виде суперпозиции по­лей бесконечной совокупности линейных источников, но можно убедиться в том, что тот же результат можно было бы получить, представив себе две совокупности волн в пустом пространстве, многократно отражаемых от двух идеальных зеркал вперед и назад, и вспоминая, что подобное отражение означает перемену знака фазы. Эти совокупности отражаемых волн гасили бы друг друга под всеми углами, кроме угла q [см. (24.33)]. Одну и ту же вещь можно рассматривать многими способами.

Глава 25

ЭЛЕКТРОДИНАМИКА

В РЕЛЯТИВИСТСКИХ ОБОЗНАЧЕНИЯХ

§ 1. Четырехвекторы

§ 2. Скалярное произведение

§ 3. Четырехмерный градиент

§ 4. Электродинамика в четырехмерных обозначениях

§ 5. Четырехмерный потенциал движущегося заряда

§ 6. Инвариантность уравнений электродинамики

В этой главе с=1

Повторить: гл. 15 (вып. 2) «Специ­альная теория от­носительности» ; гл. 16 (вып. 2) «Релятивистская энергия и им­пульс»;

гл. 17 (вып. 2} «Пространство - время»; гл. 13 (вып. 5) «Магнитостатика»

§ 1. Четырехвекторы

В этой главе мы рассмотрим применение спе­циальной теории относительности к электроди­намике. Мы изучали теорию относительности довольно давно (гл. 15—17, вып. 2), поэтому я здесь коротко напомню основные идеи.

Экспериментально установлено, что законы физики при равномерном движении не изме­няются. Если вы находитесь внутри звездо­лета, летящего с постоянной скоростью по пря­мой линии, то не можете установить самого фак­та движения корабля: для этого надо выглянуть наружу или по крайней мере провести какие-то наблюдения, связанные с внешним миром. Лю­бой написанный нами истинный закон физики должен быть сформулирован так, чтобы этот факт природы был «встроен» в него.

Соотношение между пространством и време­нем в двух системах координат (одна из которых 6" равномерно движется относительно другой 5 в направлении оси х со скоростью v) опреде­ляется преобразованиями Лоренца

(25.1)

Законы физики должны быть таковы, чтобы после преобразований Лоренца они в новой фор­ме выглядели абсолютно так же, как и раньше. Это в точности напоминает принцип независи­мости законов физики от ориентации нашей системы координат. В гл. 11 (вып. 1) мы видели, что способом математического описания этой инвариантности относительно вращения являет­ся запись уравнений в векторном виде.

Там мы обнаружили, что если, скажем, взять два вектора

то комбинация

при повороте системы координат не меняется. Таким образом, если с обеих сторон уравнения мы видим скалярное произведе­ние, подобное А·В, то уравнение будет иметь в точности ту же форму в любой повернутой системе координат. Кроме того, мы открыли оператор (см. гл. 2)

который, будучи применен к скалярной функции, дает три вели­чины, преобразующиеся в точности как вектор. С помощью это­го оператора был определен градиент, а в комбинации с дру­гими векторами — дивергенция и лапласиан. И, наконец, мы обнаружили, что, составляя суммы некоторых попарных произ­ведений компонент двух векторов, можно получить три вели­чины, которые ведут себя подобно новому вектору. Мы назвали это векторным произведением двух векторов. Используя затем векторное произведение с оператором V, мы определили ротор вектора. В дальнейшем нам часто придется ссылаться на то, что было нами сделано в векторном анализе, поэтому все важнейшие векторные операции в трехмерном пространстве, которые использовались в прошлом, мы собрали в табл. 25.1.

Пользуясь ею, можно так записать любое уравнение физики, что обе его части преобразуются при вращениях одинаковым образом. Если одна его часть — вектор, то вектором должна быть и другая часть, и обе они при вращении системы коор­динат изменяются в точности одинаково. Аналогично, если одна часть скаляр, то скаляром должна быть и другая часть, так что ни та, ни другая не изменяется при вращении системы координат и т. д.

В теории относительности пространство и время неразде­лимо связаны друг с другом, поэтому то же самое придется про­делать и для четырех измерений. Мы хотим, чтобы наши уравне­ния оставались неизменными не только при вращениях, но и при переходе в любую инерциальную систему. Это означает, что наши уравнения должны быть инвариантными относительно преобразований Лоренца (25.1). Цель настоящей главы — пока­зать, как этого можно добиться. Но прежде чем начать, примем соглашение, которое значительно облегчит нашу ра­боту (и к тому же поможет избежать путаницы). Заключается оно в таком выборе единиц измерения длины и времени, чтобы скорость света с оказалась равной единице. Вы можете считать, например, что в качестве единицы времени взят интервал, за который свет проходит отрезок в один метр (это составляет около 3·10-9 сек). Можно даже так и назвать эту единицу вре­мени: «один световой метр». Использование этой единицы еще ярче оттеняет симметрию пространства и времени. Кроме того, из наших релятивистских уравнений исчезнут все с. (Если это почему-либо вас смущает, то вы можете в любом уравнении вос­становить их или заменить каждое t на ct, а еще лучше вставить с повсюду, где это необходимо для правильной размерности уравнения.) Теперь, после такой подготовки, мы можем дви­нуться дальше.

Наша программа состоит в том, чтобы повторить в четырех­мерном пространстве-времени все то, что мы делали с векто­рами в трех измерениях. Дело это нехитрое — мы просто будем действовать аналогично. Единственное затруднение встретится только при обозначениях (символ вектора у нас уже занят трех­мерными векторами), и несколько изменятся знаки в скалярном произведении.

Прежде всего, по аналогии с векторами в трехмерном про­странстве, введем четырехвектор как набор четырех величин at, ах, ауи аz, которые при переходе в движущуюся систему коор­динат преобразуются подобно t, x, у и z. Для обозначения четырехвектора используется несколько различных способов. Мы же будем писать просто аm, понимая под этим группу четырех ве­личин (at, ax, ay, az); другими словами, значок m принимает ка­кое-либо из четырех «значений»: t, x, у и г. Иногда нам будет удобно обозначать три пространственные компоненты в виде трехмерного вектора, т. е. писать am=(at, а).

Мы уже сталкивались с одним таким четырехвектором, со­стоящим из энергии и импульса частицы (см. гл. 17, вып. 2). В наших новых обозначениях он запишется так:

pm=(Е, p), (25.2)

т. е. четырехвектор pmсостоит из энергии Е и трех компонент трехмерного импульса частицы р.

Похоже, что игра действительно оказывается нехитрой: единственное, что мы должны сделать,— это найти для каждого трехмерного вектора недостающую компоненту и получить четырехвектор. Однако все же эта задача потруднее, чем кажется на первый взгляд. Возьмем, например, вектор скорости с компонентами

Что будет его временной компонентой? Инстинкт подсказывает нам, что поскольку четырехвектор подобен t, x, у, z, то времен­ной компонентой как будто должно быть

Но это неверно. Дело в том, что время t в каждом знаменателе не инвариантно при преобразованиях Лоренца. Числитель имеет правильное поведение, a dt в знаменателе портит все дело: оно не одинаково в двух различных системах.

Перейти на страницу:

Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


6a. Электродинамика отзывы

Отзывы читателей о книге 6a. Электродинамика, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*