Kniga-Online.club

Лев Ландау - Физика для всех. Молекулы

Читать бесплатно Лев Ландау - Физика для всех. Молекулы. Жанр: Физика издательство -, год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

Таким образом, всегда возможно, изменяя давление и температуру в обход критической точки, получить пар путем непрерывного перехода его из жидкости или жидкость из пара. Такой непрерывный переход не требует кипения или конденсации.

Ранние попытки сжижения таких газов, как кислород, азот, водород, потому и были неудачны, что не было известно о существовании критической температуры. У этих газов критические температуры очень низкие: у азота -147°С, у кислорода -119°С, у водорода -240°С, или 33 К. Рекордсменом является гелий, его критическая температура равна 4,3 К. Превратить эти газы в жидкость можно лишь одним способом - надо снизить их температуру ниже указанной.

Получение низких температур

Существенного уменьшения температуры можно достигнуть разными способами. Но идея всех способов одна и та же: надо заставить тело, которое мы хотим охладить, затратить свою внутреннюю энергию.

Как же это сделать? Один из способов - заставить жидкость кипеть, не подводя тепла извне. Для этого, как мы знаем, надо уменьшить давление - свести его к значению упругости пара. Тепло, расходуемое на кипение, будет заимствовано из жидкости и температура жидкости и пара, а вместе с ней и упругость пара будут падать. Поэтому, чтобы кипение не прекращалось и происходило побыстрее, из сосуда с жидкостью надо непрерывно откачивать воздух.

Однако падению температуры при этом процессе наступает предел: упругость пара становится в конце концов совершенно незначительной, и нужное давление не смогут создать даже самые сильные откачивающие насосы.

Для того чтобы продолжить понижение температуры, можно, охлаждая газ полученной жидкостью, превратить и его в жидкость с более низкой температурой кипения.

Теперь процесс откачки можно повторить со вторым , веществом и таким образом получить более низкие температуры. В случае необходимости такой "каскадный" метод получения низких температур можно продлить.

Именно таким образом и поступали в конце прошлого века; сжижение газов производили ступенями: последовательно превращали в жидкость этилен, кислород, азот, водород - вещества с температурами кипения -103, -183, -196 и - 253°С. Располагая жидким водородом, можно получить и самую низкокипящую жидкость - гелий (-269°С). Сосед "слева" помогал получить соседа "справа".

Каскадному методу охлаждения без малого сто лет. В 1877 г. этим методом был получен жидкий воздух.

В 1884-1885 гг. впервые был получен жидкий водород. Наконец, еще через двадцать лет была взята последняя крепость: в 1908 г. Камерлинг-Оннесом в городе Лейдене в Голландии был превращен в жидкость гелий - вещество с самой низкой критической температурой. Недавно был отмечен 70-летний юбилей этого важного научного достижения.

Долгие годы Лейденская лаборатория была единственной "низкотемпературной" лабораторией. Теперь же во всех странах существуют десятки таких лабораторий, не говоря уже о заводах, производящих жидкий воздух азот, кислород и гелий для технических целей.

Каскадный метод получения низких температур теперь применяется редко. В технических установках для понижения температуры применяют другой способ понижения внутренней энергии газа: заставляют газ быстро расширяться и производить работу за счет внутренней энергии.

Если, например, сжатый до нескольких атмосфер воздух пустить в расширитель, то при совершении работы перемещения поршня или вращения турбины воздух так резко охладится, что превратится в жидкость. Углекислый газ, если его быстро выпустить из баллона, так резко охлаждается, что на лету превращается в "лед".

Жидкие газы находят широкое применение в технике. Жидкий кислород употребляется во взрывной технике, как компонент топливной смеси в реактивных двигателях.

Сжижение воздуха используется в технике для разделения составляющих воздух газов.

В различных областях техники требуется вести работу при температуре жидкого воздуха. Но для многих физических исследований эта температура недостаточно низка. Действительно, если перевести градусы Цельсия в абсолютную шкалу, то мы увидим, что температура жидкого воздуха - это примерно 1/3 от комнатной температуры. Гораздо более интересны для физики "водородные" температуры, т. е. температуры порядка 14-20 К, и в особенности "гелиевые" температуры. Самая низкая температура, получающаяся при откачке жидкого гелия, это 0,7 К.

Физикам удалось и гораздо ближе подойти к абсолютному нулю. В настоящее время получены температуры, превышающие абсолютный нуль всего лишь на несколько тысячных долей градуса. Однако эти сверхнизкие температуры получают способами, не похожими на те, что мы описали выше.

В последние годы физика низких температур породила специальную отрасль промышленности, занятую производством аппаратуры, позволяющей поддерживать при температуре, близкой к абсолютному нулю, большие объемы; разработаны силовые кабели, токопроводящие шины которых работают при температуре менее 10 К.

Переохлажденный пар и перегретая жидкость

При переходе температуры кипения пар должен конденсироваться, превращаться в жидкость. Однако,; оказывается, если пар не соприкасается с жидкостью и если пар очень чистый, то удается получить переохлажденный или "пересыщенный пар - пар, которому давно следовало бы уже стать жидкостью.

Пересыщенный пар очень неустойчив. Иногда достаточно толчка или брошенной в пространстве пара крупинки, чтобы запоздавшая конденсация началась.

Опыт показывает, что сгущение молекул пара резко облегчается внесением в пар мелких инородных частиц. В пыльном воздухе пересыщение водяного пара не происходит. Можно вызвать конденсацию клубами дыма. Ведь дым состоит из мелких твердых частичек. Попадая в пар, эти частички собирают около себя молекулы, становятся центрами конденсации.

Итак, хотя и неустойчиво, пар может существовать в области температур, приспособленной для "жизни" жидкости.

А может ли жидкость на тех же условиях "жить" в области пара? Иначе говоря, можно ли перегреть жидкость?

Оказывается, можно. Для этого нужно добиться, чтобы молекулы жидкости не отрывались от ее поверхности. Радикальное средство - ликвидировать свободную поверхность, т. е. поместить жидкость в такой сосуд, где она была бы сжата со всех сторон твердыми стенками. Таким способом удается достигнуть перегрева порядка нескольких градусов, т. е. увести точку, изображающую состояние жидкостей, вправо от кривой кипения (рис. 4.4).

Перегрев - это сдвиг жидкости в область пара, поэтому перегрева жидкости можно добиться как подводом тепла так и уменьшением давления.

Последним способом можно добиться удивительного результата. Вода или другая жидкость, тщательно, освобожденная от растворенных газов (это нелегко сделать), помещается в сосуд с поршнем, доходящим до поверхности жидкости. Сосуд и поршень должны смачиваться жидкостью. Если теперь тянуть поршень на себя, то вода, сцепленная с дном поршня, последует за ним. Но слой воды, уцепившийся за поршень, потянет за собой следующий слой воды, этот слой потянет нижележащий, в результате жидкость растянется.

В конце концов столб воды разорвется (именно столб воды, а не вода оторвется от поршня), но произойдет это тогда, когда сила на единицу площади дойдет до десятков килограммов. Другими словами, в жидкости создается отрицательное давление в десятки атмосфер.

Уже при малых положительных давлениях устойчивым является парообразное состояние вещества. А жидкость можно довести до отрицательного давления. Более яркого примера "перегрева" не придумаешь.

Плавление

Нет такого твердого тела, которое сколько угодно противостояло бы повышению температуры. Рано или поздно твердый кусочек превращается в жидкость; правый, в некоторых случаях нам не удастся добраться до температуры плавления - может произойти химическое разложение.

По мере возрастания температуры молекулы движутся все интенсивнее. Наконец, наступает такой момент, когда поддержание порядка "среди сильно "раскачавшихся" молекул становится невозможным. Твердое тело плавится. Самой высокой температурой плавления обладает вольфрам: 3380°С. Золото плавится при 1063°С, железо - при 1539°С. Впрочем, есть и легкоплавкие металлы. Ртуть, как хорошо известно, плавится уже при температуре -39°С. Органические вещества не имеют высоких температур плавления. Нафталин плавится при 80°С, толуол - при -94,5°С.

Измерить температуру плавления тела, в особенности если оно плавится в интервале температур, которые измеряют обычным термометром, совсем нетрудно. Совсем не обязательно следить глазами за плавящимся телом. Достаточно смотреть на ртутный столбик термометра. Пока плавление не началось, температура тела растет (рис. 4.5). Как только плавление начинается, повышение температуры прекращается, и температура останется неизменной, пока процесс плавления не закончится полностью.

Перейти на страницу:

Лев Ландау читать все книги автора по порядку

Лев Ландау - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


Физика для всех. Молекулы отзывы

Отзывы читателей о книге Физика для всех. Молекулы, автор: Лев Ландау. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*