Ричард Фейнман - 7. Физика сплошных сред
Таблица 32.3 · длины волн, при которых МЕТАЛЛ СТАНОВИТСЯ ПРОЗРАЧНЫМ
Вас может удивить, почему плазменная частота wр должна иметь отношение к распространению волн в металлах. Плазменная частота появилась у нас в гл. 7 (вып. 5) как собственная частота колебаний плотности свободных электронов. (Электрическое расталкивание группы электронов и их инерция приводят к колебаниям плотности.) Продольные волны плазмы резонируют при частоте w. Но сейчас мы говорим о поперечных волнах, и мы уже нашли, что при частотах, меньших wр, происходит их поглощение. (Это очень интересное и отнюдь не случайное совпадение.)
Хотя мы все время говорили о распространении волн в металлах, вы одновременно, должно быть, почувствовали универсальность явлений физики: нет никакой разницы в том, находятся ли свободные электроны в металле, в плазме, в ионосфере Земли или в атмосфере звезд. Чтобы понять распространение радиоволн в ионосфере, можно воспользоваться тем же выражением, разумеется, при надлежащих значениях величин N и t. Теперь мы можем видеть, почему длинные радиоволны поглощаются или отражаются ионосферой, тогда как короткие свободно проходят через нее. (Поэтому для связи с искусственными спутниками Земли должны применяться короткие волны.)
Мы говорили о распространении предельных высоко- и низкочастотных волн в металлах. Для промежуточных же частот необходимо использовать «полновесное» уравнение (32.42). В общем случае показатель преломления будет иметь вещественную и мнимую части, и при распространении волн в металлах происходит их поглощение. Очень тонкие слои металла прозрачны даже для обычных оптических частот. В качестве примера приведем специальные защитные очки для рабочих, работающих около высокотемпературных печей. Эти очки изготавливаются напылением на стекло очень тонкого слоя золота; стекло это достаточно прозрачно для видимого света и на просвет выглядит как зеленое, но инфракрасные лучи сильно поглощает.
И, наконец, от читателя невозможно скрыть тот факт, что многие из этих формул в некотором отношении напоминают формулы для диэлектрической проницаемости c, рассмотренные в гл. 10 (вып. 5). Диэлектрической проницаемостью c измеряется реакция материала на статическое электрическое поле, т. е. когда w=0. Если вы посмотрите повнимательнее на определение n и c, то обнаружите, что c есть не что иное, как предел n2 при w®0. В самом деле, положив в уравнениях этой главы w=0 и n2=c, мы воспроизведем уравнения теории диэлектрической проницаемости гл. 11 (вып. 5).
* Или записав — i=е-ip/2; Ц-i=e-ip/4 = соsp/4- isinp/4, что приводит к тому же результату.
* Взяты из справочника «Handbook of Physics and Chemistry».
* Всюду в этой главе мы будем пользоваться обозначениями, принятыми в гл. 31 (вып. 3); пусть a — атомная поляризуемость, как это определено здесь. В предыдущей главе мы пользовались буквой a для обозначения объемной поляризуемости, т. е. отношения Р к Е. Но в обозначениях этой главы P=Nae0E [см. выражение (32.8)].
Глава 33
ОТРАЖЕНИЕ ОТ ПОВЕРХНОСТИ
§1. Отражение и преломление света
§2. Волны в плотных материалах
§3. Граничные условия
§4. Отраженная и преломленная волны
§5. Отражение от металлов
§6. Полное внутреннее отражение
Повторить: гл. 33 (вып. 3) « Поляризация »
§ 1. Отражение и преломление света
Предметом обсуждения в этой главе будет преломление и отражение света и электромагнитных волн вообще от поверхности. О законах отражения и преломления света мы говорили уже в вып. 3. Вот что мы там выяснили:
1. Угол отражения равен углу падения. Причем углы определяются, как это показано на фиг. 33.1:
Фиг. 33.1. Отражение и преломление волн на поверхности.
Направления распространения волн перпендикулярны их гребням.
qr=qi. (33.1)
2. Произведение nsinq одинаково как для падающего луча, так и для преломленного (закон Снелла):
n1sinq=n2sinqt. (33.2)
3. Интенсивность отраженного света зависит как от угла падения, так и от направления поляризации. Для вектора Е, перпендикулярного плоскости падения, коэффициент отражения R┴ равен
Для вектора Е, параллельного плоскости падения, коэффициент отражения R║ равен
4. Для перпендикулярно падающего луча (разумеется, при любой поляризации!)
(Мы использовали индекс i для обозначения величин в падающем луче, t — в преломленном, а r — в отраженном.)
Наши прежние рассуждения практически достаточно полны для обычной работы, но мы собираемся применить здесь другой способ. Вы хотите знать почему? Причина заключается в том, что раньше мы считали показатель преломления вещественным (т. е. что никакого поглощения в материале не происходит). Однако есть и другая причина: вам следует уметь обращаться с волнами на поверхности с точки зрения уравнений Максвелла. Ответы, конечно, получатся одинаковые, но теперь уже путем непосредственного решения волновой задачи, а не с помощью правдоподобных рассуждений.
Я хочу подчеркнуть, что амплитуда отраженной от поверхности волны не определяется такими свойствами материала, как показатель преломления. Она зависит от чисто «поверхностных свойств», которые, строго говоря, определяются тем, как обработана поверхность. Тонкий слой посторонней примеси на границе между двумя материалами с показателями n1 и n2 обычно изменяет отражение. (Имеются всяческие виды интерференции, примером которой могут служить разноцветные масляные пленки на воде. Подбором толщины можно свести амплитуду отражения данной частоты к нулю. Именно так и делаются просветленные линзы.) Формулы, которые мы получим, будут верны, только когда показатель преломления резко изменится на расстояниях, малых по сравнению с длиной волны. Длина волны света, например, составляет около 5000 Е, так, что под «гладкой» поверхностью мы понимаем поверхность, на которой условия изменяются всего на протяжении нескольких атомов (или на расстоянии нескольких ангстрем). Так что для света наши формулы будут работать только на хорошо отполированной поверхности. Вообще же если показатель преломления постепенно меняется на расстоянии нескольких длин волн, то отражение будет незначительным.
§ 2. Волны в плотных материалах
Прежде всего я напомню вам об удобном способе описания синусоидальных плоских волн, которым мы пользовались в гл. 36 (вып. 3). Любая компонента поля в волне (возьмем, например, Е) может быть записана в форме
E=E0ei(wt-k·r), (33.6)
где Е — амплитуда поля в точке г (относительно начала координат) в момент t. Вектор k указывает направление распространения волны, а его величина |k|=k=2pl равна волновому числу. Фазовая скорость волны vфаз=w/k для света в материале с показателем n будет равна c/n, поэтому
k=wn/c. (33.7)
Предположим, что вектор k направлен по оси z; тогда k·r будет просто хорошо знакомым нам kz. Для вектора k в любом другом направлении z следует заменить на rk — расстояние от начала в направлении вектора k, т. е. kz мы должны заменить на krk, что как раз равно k·r (фиг. 33.2).
Фиг. 33.2. Фаза волны в точке Р, распространяющейся в направлении k, равна (wt-k·r).
Таким образом, запись (33.6) является удобным представлением волны, идущей в любом направлении.
Разумеется, при этом мы должны помнить, что
k·r=kxx+kyy+k:zz,
где kx, kyи kz — компоненты вектора k по трем осям. Мы уже отмечали однажды, что на самом деле величины (w, kx, ky, kz) образуют четырехвектор и что его скалярное произведение на (t, x, у, z) является инвариантом. Таким образом, фаза волны есть инвариант и формулу (33.6) можно записать в виде