Kniga-Online.club
» » » » Роджер Пенроуз - Новый ум короля: О компьютерах, мышлении и законах физики

Роджер Пенроуз - Новый ум короля: О компьютерах, мышлении и законах физики

Читать бесплатно Роджер Пенроуз - Новый ум короля: О компьютерах, мышлении и законах физики. Жанр: Физика издательство -, год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

Трудность с ответом на этот вопрос была связана отчасти с определением смысла «механической процедуры» — это понятие выходило за рамки стандартных математических идей того времени. Чтобы как-то ее преодолеть, Тьюринг постарался представить, как можно было бы формализовать понятие «машина» путем расчленения ее действий на элементарные операции. Вполне вероятно, что в качестве примера «машины», помимо прочего, Тьюринг рассматривал и человеческий мозг, тем самым относя к «механическим процедурам» все действия, которые математики выполняют, размышляя над решением математических задач.

Хотя такой взгляд на процесс мышления оказался весьма полезным при разработке Тьюрингом его в высшей степени важной теории, нам совершенно необязательно его придерживаться. Действительно, дав точное определение механической процедуры, Тьюринг тем самым показал, что существуют совершенно четко определенные математические операции, которые никак не могут называться механическими в общепринятом смысле слова. Можно, наверное, усмотреть некую иронию в том, что эта сторона работы Тьюринга позволяет нам теперь косвенным образом выявить его собственную точку зрения на природу мышления. Однако, нас это пока занимать не будет. Прежде всего нам необходимо выяснить, в чем же, собственно, заключается теория Тьюринга.

Концепция Тьюринга

Попробуем представить себе устройство, предназначенное для выполнения некоторой (конечноопределенной) вычислительной процедуры. Каким могло бы быть такое устройство в общем случае? Мы должны быть готовы к некоторой идеализации и не должны обращать внимания на практические аспекты — мы на самом деле рассматриваем математическую идеализацию «машины». Нам нужно устройство, способное принимать дискретное множество различных возможных состояний, число которых конечно (хотя и может быть очень большим). Мы назовем их внутренними состояниями устройства. Однако мы не хотим, чтобы объем выполняемых на этом устройстве вычислений был принципиально ограничен. Вспомним описанный выше алгоритм Евклида. В принципе, не существует предельной величины числа, после которой алгоритм перестает работать. Этот алгоритм, или некая общая вычислительная процедура, будет тем же самым независимо от того, сколь велики числа, к которым он применяется. Естественно, для очень больших чисел выполнение процедуры может занять много времени и может потребоваться огромное количество «черновиков» для выполнения пошаговых вычислений. Но сам по себе алгоритм останется тем же конечным набором инструкций, сколь бы большими ни были эти числа.

Значит, несмотря на конечность числа внутренних состояний, наше устройство должно быть приспособлено для работы с входными данными неограниченного объема. Более того, устройство должно иметь возможность использовать внешнюю память неограниченного объема (наши «черновики») для хранения данных, необходимых для вычислений, а также уметь выдавать окончательное решение любого размера. Поскольку наше устройство имеет только конечное число различных внутренних состояний, мы не можем ожидать, что оно будет «хранить внутри себя» все внешние данные, равно как и результаты своих промежуточных вычислений. Напротив, оно должно обращаться только к тем данным и полученным результатам, с которыми оно работает непосредственно в настоящий момент, и уметь производить над ними требуемые (опять же, в данный момент) операции. Далее, устройство записывает результаты этих операций — возможно, в отведенной для этого внешней памяти — и переходит к следующему шагу. Именно неограниченные объемы входных данных, вычислений и окончательного результата говорят о том, что мы имеем дело с идеализированным математическим объектом, который не может быть реализован на практике (рис. 2.3).

Рис. 2.3. Точная машина Тьюринга требует бесконечной ленты!

Но подобная идеализация является очень важной. Чудеса современных компьютерных технологий позволяют создавать электронные устройства хранения информации, которые мы можем рассматривать как неограниченные в приложении к большинству практических задач.

На самом деле память устройства, которая выше была названа «внешней», можно рассматривать как внутренний компонент современного компьютера. Но это уже технические детали — рассматривать часть объема для хранения информации как внутреннюю или внешнюю по отношению к устройству. Одним из способов проводить такое деление между «устройством» и «внешней» частью могло бы стать использование понятий аппаратного (hardware) и программного (software) обеспечения вычислений. В этой терминологии внутренняя часть могла бы соответствовать аппаратному обеспечению (hardware), тогда как внешняя — программному обеспечению (software). Я не буду жестко придерживаться именно этой классификации, однако, какую бы точку зрения мы не заняли, не вызывает сомнений, что идеализация Тьюринга достаточно точно аппроксимируется современными электронными компьютерами.

Тьюринг представлял внешние данные и объем для хранения информации в виде «ленты» с нанесенными на нее метками. Устройство по мере необходимости могло обращаться к этой ленте, «считывать» с нее информацию и перемещать ее вперед или назад в ходе выполнения операций. Помимо этого, устройство могло ставить новые метки на ленту и стирать с нее старые, что позволяло использовать одну и ту же ленту и как внешнюю память (то есть «черновик»), и как источник входных данных. На самом деле, не стоило бы проводить явное различие между этими двумя понятиями, поскольку во многих операциях промежуточные результаты вычислений могут играть роль новых исходных данных. Вспомним, что при использовании алгоритма Евклида мы раз за разом замещали исходные числа (А и В) результатами, полученными на разных этапах вычислений. Сходным образом та же самая лента может быть использована и для вывода окончательного результата («ответа»). Лента будет двигаться через устройство туда-сюда до тех пор, пока выполняются вычисления. Когда, наконец, все вычисления закончены, устройство останавливается, и результат вычислений отображается на части ленты, лежащей по одну сторону от устройства. Для определенности будем считать, что ответ всегда записывается на части ленты, расположенной слева от устройства, а все исходные числовые данные и условия задачи — на части ленты, расположенной справа от него.

Меня всегда несколько смущало представление о конечном устройстве, которое двигает потенциально бесконечную ленту вперед и назад. Неважно, насколько легок материал ленты — сдвинуть бесконечную ленту все-таки будет трудно! Вместо этого я предпочитаю представлять себе эту ленту как некое окружение, по которому может перемещаться наше конечное устройство. (Конечно же, в современных электронных устройствах ни «лента», ни само «устройство» не должны в обычном смысле физически «перемещаться», но представление о таком «движении» позволяет достичь известной наглядности.) При таком подходе устройство получает все входные данные из этого окружения, использует его в качестве «черновика» и, наконец, записывает в него конечный результат.

В представлении Тьюринга «лента» состоит из бесконечной в обоих направлениях линейной последовательности квадратов. Каждый квадрат либо пуст, либо помечен[41]. Использование помеченных и пустых квадратов означает, что мы допускаем разбиение нашего «окружения» (т. е. ленты) на части и возможность его описания множеством дискретных элементов (в противоположность непрерывному описанию). Это представляется вполне разумным, если мы хотим, чтобы наше устройство работало надежно и совершенно определенным образом. В силу используемой математической идеализации мы допускаем (потенциальную) бесконечность «окружения», однако в каждом конкретном случае входные данные, промежуточные вычисления и окончательный результат всегда должны быть конечными. Таким образом, хотя лента и имеет бесконечную длину, на ней должно быть конечное число непустых квадратов. Другими словами, и с той, и с другой стороны от устройства найдутся квадратики, после которых лента будет абсолютно пустой. Мы обозначим пустые квадраты символом «0», а помеченные — символом «1», например:

Нам нужно, чтобы устройство «считывало» информацию с ленты. Мы будем считать, что оно считывает по одному квадрату за раз и смещается после этого ровно на один квадрат влево или вправо. При этом мы не утрачиваем общности рассуждений: устройство, которое читает за один раз n квадратов или перемещается на k квадратов, легко моделируется устройством, указанным выше. Передвижение на k квадратов можно построить из к перемещений по одному квадрату, а считывание n квадратов за один прием сводится к запоминанию результатов n однократных считываний.

Перейти на страницу:

Роджер Пенроуз читать все книги автора по порядку

Роджер Пенроуз - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


Новый ум короля: О компьютерах, мышлении и законах физики отзывы

Отзывы читателей о книге Новый ум короля: О компьютерах, мышлении и законах физики, автор: Роджер Пенроуз. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*