Брайан Грин - Ткань космоса. Пространство, время и текстура реальности
88
Для математизированного, но на очень высоком педагогическом уровне, изложения теории интеграла по путям (суммирования по историям) см.: Фейнман Р., Хибс А. Квантовая механика и интегралы по траекториям. М.: Мир, 1968.
89
Вы можете попытаться привлечь дискуссию главы 3, в которой мы узнали, что при достижении скорости света время останавливается, чтобы доказать, что с точки зрения фотона все моменты времени есть один и тот же момент, так что фотон «знает», как установлен выключатель детектора, когда он проходит через светоделитель. Однако эти эксперименты могут быть проведены и с другими видами частиц, такими как электроны, которые двигаются медленнее света, а результаты останутся неизменными. Таким образом, это объяснение не касается сути физики явления.
90
Экспериментальная установка, а также реально подтверждённые экспериментальные результаты обсуждаются в статье: Kim Y., Yu R., Kulik S., Shih Y., Scully M. Phys. Rev. Lett. Vol. 84. № 1. P. 1–5.
91
Квантовая механика также может основываться на эквивалентном уравнении, представленном в другой форме Вернером Гейзенбергом в 1925 г. (это представление известно как матричная механика). Для склонного к математике читателя приведём уравнение Шрёдингера:
где H обозначает гамильтониан, Ψ обозначает волновую функцию, а ħ есть постоянная Планка.
92
Подготовленный читатель отметит, что я здесь пропустил одно тонкое место. А именно, нам бы пришлось взять комплексно сопряжённую волновую функцию частицы, чтобы она была решением обращённого во времени уравнения Шрёдингера. Это означает, что описанный в примечании 2 к главе 6 оператор T, действуя на волновую функцию Ψ(x, t), отображает её в Ψ*(x, −t). Это не влияет существенно на обсуждение в тексте.
93
Бом на самом деле заново открыл и дальше развил подход, который восходит к принцу Луи де Бройлю, так что этот подход иногда называют подходом де Бройля-Бома.
94
Для склонного к математике читателя заметим, что подход Бома локален в конфигурационном пространстве, но определённо нелокален в реальном пространстве. Изменения волновой функции в одном месте в реальном пространстве немедленно оказывают влияние на частицы, расположенные в других, удалённых местах.
95
Для исключительно ясного обсуждения подхода Жирарди-Римини-Вебера и его применения к пониманию квантового запутывания см.: Bell J. S. Are There Quantum Jumps? in Speakable and Unspeakable in Quantum Mechanics. Cambridge, Eng.: Cambridge University Press, 1993.
96
Некоторые физики рассматривают вопросы из этого списка как не относящиеся к делу и являющиеся побочным продуктом ранней путаницы в понимании квантовой механики. Волновая функция, утверждает эта точка зрения, является просто теоретическим средством, чтобы делать (вероятностные) предсказания, и не должна соответствовать никакой, кроме математической, реальности (точка зрения, которую иногда называют подходом «Заткнись и вычисляй», поскольку она поощряет использовать квантовую механику и волновые функции, чтобы делать предсказания, не задумываясь сильно о том, что на самом деле означают и делают волновые функции). Вариант этой точки зрения утверждает, что волновые функции никогда на самом деле не коллапсируют, но что взаимодействия с окружающей средой делают так, что кажется, что коллапсируют. (Мы коротко обсудим версию такого подхода.) Я симпатизирую этим идеям и, фактически, очень надеюсь, что рано или поздно мы будем обходиться без услуг понятия коллапса волновой функции. Но я не нахожу первый подход удовлетворительным, также я не готов отказаться от понимания, что происходит в мире, когда мы «не смотрим» на него, а второй подход — при том, что, на мой взгляд, это есть правильное направление, — требует дальнейшей математической разработки. Суть в том, что измерение вызывает нечто, что есть, или похоже на, или маскируется под коллапс волновой функции. Либо через лучшее понимание влияния окружения, либо через некоторые другие подходы, которые ещё должны быть предложены, но этот явный эффект требует рассмотрения, а не просто выбрасывания из головы.
97
Помимо очевидной экстравагантности, имеются и другие спорные проблемы, связанные с многомировой интерпретацией. Например, имеются технические проблемы в определении понятия вероятности в контексте, в котором имеется бесконечное число копий каждого из наблюдателей, чьи измерения, как предполагается, описываются этими вероятностями. Если данный наблюдатель на самом деле является одной из многих копий, в каком смысле мы можем сказать, что он имеет определённую вероятность измерить этот или тот результат? Кто на самом деле есть этот наблюдатель? Каждая копия наблюдателя будет измерять — с вероятностью 1 — любой результат, какой бы ни был получен для той копии вселенной, в которой он находится, так что полная вероятностная схема требует (и требовала, и продолжает требовать) осторожной проверки в рамках многомировой интерпретации. В качестве более технического замечания заметим, что в зависимости от того, как именно определяются «многие миры», может потребоваться выбор привилегированного базиса собственных состояний. Но как должен быть выбран этот собственный базис? Была масса дискуссий и написано много статей по этим вопросам, но на сегодняшний день нет универсально принимаемого решения. Подход, базирующийся на декогеренции, который тоже далее коротко обсуждается, частично проясняет эти проблемы и предлагает особый взгляд на проблему выбора собственного базиса.
98
Подход Бома или де Бройля-Бома никогда не привлекал большого внимания. Возможно, одна из причин этого, как обратил внимание Джон Белл в своей статье «The Impossible Pilot Wave» в сборнике «Speakable and Unspeakable in Quantum Mechanics», что ни де Бройль, ни Бом не испытывали особенно нежных чувств к тому, что сами разработали. Но, как указал всё тот же Белл, подход де Бройля-Бома преодолевает значительную часть неопределённости и субъективности многих стандартных подходов. Даже если подход неверен, всё же полезно иметь в виду, что частица может иметь определённое положение и определённую скорость в каждый момент времени (за пределами возможности их измерить, даже в принципе) и всё же полностью подчиняться предсказаниям стандартной квантовой механики — неопределённости и всему такому. Другой аргумент против подхода Бома состоит в том, что нелокальность в этой схеме более «жёсткая», чем в стандартной квантовой механике. Это означает, что в подходе Бома с самого начала и как центральный элемент теории предполагается нелокальное взаимодействие (между волновой функцией и частицей), тогда как в стандартной квантовой механике нелокальность скрыта более глубоко и появляется только в нелокальных корреляциях между далеко разнесёнными измерениями. Но, как доказывали сторонники подхода Бома, если что-то скрыто, оно от этого не станет присутствовать меньше и, более того, так как стандартный подход имеет проблемы с квантовым измерением — тем самым местом, где нелокальность и проявляется, — однажды, когда проблема будет полностью решена, нелокальность вполне может оказаться и не столь скрытой. Другие доказывали, что имеются препятствия на пути разработки релятивистской версии подхода Бома, хотя прогресс на этом фронте также имеет место (см., например: Bell J. Beables for Quantum Field Theory в упомянутом выше сборнике). Так что, определённо, стоит держать этот альтернативный подход в уме, хотя бы только как некое средство против поспешных заключений о том, что должно неизбежно следовать из квантовой механики. Для склонного к математике читателя прекрасное рассмотрение теории Бома и проблем квантового запутывания можно найти в книге: Maudlin T. Quantum Non-locality and Relativity. Molden, Mass.: Blackwell, 2002.
99
Для глубокого, хотя и несколько технического обсуждения стрелы времени в целом и роли декогеренции в частности, см.: Zeh H. D. The Physical Basis of the Direction of Time. Heidelberg: Springer, 2001 (см. также интересную, но уже немного устаревшую статью Дитера Цея: Zeh H. D. Quantum theory and time asymmetry. arXiv:quant-ph/0307013 — Прим. ред.).
100
Только для того чтобы дать вам ощущение, как быстро возникает декогеренция — как быстро влияние окружающей среды подавляет квантовую интерференцию и при этом сводит квантовые вероятности к привычным классическим, — приведём несколько примеров. Числа приблизительны, но смысл, который они передают, ясен. Волновая функция частички пыли, плавающей в вашей комнате и бомбардируемой дрожаниями молекул воздуха, станет декогерентной через примерно миллиардную от миллиардной от миллиардной от миллиардной (10−36) доли секунды. Если частичка пыли содержится в совершенной вакуумной камере и взаимодействует только с солнечным светом, её волновая функция будет декогерировать чуть медленнее, требуя тысячную от миллиардной от миллиардной (10−21) доли секунды. А если частичка пыли плавает в тёмных глубинах пустого пространства и взаимодействует только с реликтовыми микроволновыми фотонами Большого взрыва, её волновая функция станет декогерентной примерно за миллионную долю секунды. Эти числа экстремально малы, а это показывает, что декогеренция для чего-то даже столь крохотного, как частица пыли, происходит очень быстро. Для более крупных объектов декогеренция происходит ещё быстрее. Потому неудивительно, что хотя наша Вселенная и квантовая, мир вокруг нас выглядит так, как он выглядит (см., например: Joos E. Elements of Environmental Decoherence, in Decoherence: Theoretical, Experimental, and Conceptual Problems. Ph. Blanchard, D. Giulini, E. Joos, C. Kiefer, I.-O. Stamatescu, eds. Berlin: Springer, 2000).