Мичио Каку - Физика будущего
Конечно, использование обычных рентгеновских лучей вызвало бы множество проблем. Во-первых, чтобы получить изображение, вам надо поместить позади объекта специальную пленку, облучить его, а затем эту пленку проявить. Однако обратное рассеяние позволяет решить эту проблему. Рентгеновские лучи испускаются специальным слабым источником и наполняют всю комнату; они отражаются от стен и пронизывают интересующие вас объекты с обратной стороны. Ваши очки воспринимают именно эти отраженные лучи, прошедшие сквозь объект. Изображение в них по качеству может быть ничуть не хуже, чем подобные рисунки в комиксах. (А увеличение чувствительности очков поможет снизить интенсивность рентгеновского излучения и, соответственно, минимизировать риск для здоровья.)
Универсальные переводчики
В фильмах «Звездный путь» и «Звездные войны», как, впрочем, практически во всех научно-фантастических фильмах, все инопланетяне прекрасно говорят по-английски[4]. В любом таком фильме существует штука под названием «универсальный переводчик», позволяющая землянам мгновенно найти общий язык с любой инопланетной цивилизацией и избавляющая от необходимости объясняться с инопланетянами при помощи жестов.
Когда-то считалось, что универсальный переводчик — совершенно нереалистичная футуристическая идея, но первые варианты подобных приборов уже созданы. Это означает, что в будущем, если вы окажетесь в чужой стране и заговорите там с местными жителями, в ваших контактных линзах появятся субтитры, как если бы вы смотрели иностранный фильм. Вы также сможете попросить компьютер озвучить перевод и подать его непосредственно вам в уши. Два человека смогут беседовать между собой, причем каждый из них будет говорить на своем языке, а слова собеседника слышать в компьютерном переводе (если у обоих будет включен универсальный переводчик). Перевод, конечно, не будет идеальным (никуда не денутся проблемы с переводом идиом, сленга и образных выражений), но для понимания смысла сказанного его будет вполне достаточно.
К решению проблемы универсального перевода существует несколько подходов. Во-первых, необходимо создать устройство, которое могло бы преобразовывать устную речь в письменный текст. В середине 1990-х гг. на рынке появились первые системы распознавания речи, способные понимать до 40 000 слов с 95 %-ной точностью. Если учесть, что в обычной бытовой речи используется всего лишь от 500 до 1000 слов, можно понять, что эти системы для своего времени были более чем адекватными. После того как запись с голоса готова, каждое слово следует перевести на нужный язык при помощи компьютерного словаря. Затем приходит черед самого сложного: вставить слова в контекст, при необходимости добавить сленг, разговорные выражения и т. п. Все это требует очень точного понимания языковых нюансов. Компьютерный перевод по этой технологии — целая наука, известная как CAT (computer assisted translation).
Другой способ предложили ученые Университета Карнеги-Меллон в Питтсбурге. У них уже есть прототип, способный переводить с китайского на английский, а с английского на испанский или немецкий. Электроды, закрепленные на шее и лице говорящего, улавливают сокращения речевых мышц и расшифровывают по ним произнесенные слова. Здесь не нужен микрофон и вообще никакая аудиотехника, а слова можно проговаривать даже беззвучно. Затем компьютер переводит слова, а синтезатор речи произносит их вслух. В простых разговорах, где используется 100–200 слов, ученым удалось достичь 80 %-ной точности.
«Идея состоит в том, что вы можете беззвучно артикулировать слова на английском, а звучать они будут на китайском или другом языке», — говорит Таня Шульц (Tanja Schultz), участник исследований. В будущем компьютер, возможно, научится читать по губам, так что и электроды не будут нужны. И можно себе представить, в принципе, оживленную беседу двух людей, говорящих на разных языках.
В будущем языковые барьеры, так долго и трагично не позволявшие представителям разных культур понять друг друга[5], возможно, падут, и поспособствуют этому универсальный переводчик и интернет-очки (или линзы).
Итак, дополненная реальность открывает перед нами совершенно новый мир, но в этом мире существуют свои ограничения. Проблемы не связаны с техникой, а возможности расширенной реальности не ограничены пропускной способностью канала — ведь по оптико-волоконному кабелю можно передать сколько угодно информации.
Настоящий камень преткновения здесь — программное обеспечение. Создавать его можно только старым добрым способом — вручную. Все коды, строчку за строчкой, должен будет написать человек карандашом на бумаге или в крайнем случае на портативном компьютере; только так можно будет пробудить к жизни эти воображаемые миры. Технику можно производить в любых количествах, да и вычислительные мощности увеличивать тоже (добавляешь новые чипы — и готово!), а вот массовое производство мозгов невозможно. Это означает, что путь человечества к полномасштабной дополненной реальности будет нелегким и займет несколько десятилетий.
Голограммы и трехмерные образы
К середине века мы, вероятно, увидим еще одно техническое новшество — настоящее трехмерное кино и телевидение. Когда-то давно, в 1950-х гг., при просмотре трехмерного фильма вы должны были надеть неуклюжие очки с разноцветными стеклами — красным и синим. Дело в том, что человеческие глаза, правый и левый, видят чуть-чуть по-разному. На экран проецируется сразу два изображения, одно синее и одно красное. Стекла служат фильтрами, и в результате в левый и правый глаз поступает немножко разное изображение; мозг смешивает их, и возникает иллюзия объема. Восприятие глубины изображения, таким образом, создавалось искусственно. (Чем дальше друг от друга расположены глаза, тем лучше воспринимается глубина изображения. Именно поэтому у некоторых животных глаза находятся на конце гибких стебельков: так объем воспринимается лучше всего.)
Определенный прогресс обеспечивают 3D-очки из поляризованного стекла, благодаря которым левый и правый глаз получают два разных поляризованных изображения. Таким способом можно создавать полноцветные, а не красно-синие, объемные изображения. Свет — это волна, и колебания в нем могут происходить в разных плоскостях — к примеру, в вертикальной и горизонтальной. Поляризованная линза пропускает только световые колебания определенной направленности. Так что если стекла ваших очков поляризованы в разных направлениях, вы можете создать эффект трехмерности изображения. В более сложном варианте трехмерности можно подавать разные изображения прямо на контактные линзы.
Трехмерное телевидение, которое также нужно смотреть в очках, уже появилось на рынке. Очень скоро, однако, необходимость в очках исчезнет, их сменят двояковыпуклые линзы. Телеэкран будет специально изготавливаться таким образом, чтобы выдавать для глаз два различных изображения чуть-чуть под разными углами. Каждый глаз зрителя будет видеть свое изображение, а вместе они создадут иллюзию трехмерности. У этой системы есть свои недостатки: голова должна быть правильно расположена; каждый глаз должен находиться в предназначенной именно для него точке. (Принцип действия такого телевидения основан на хорошо известной оптической иллюзии. Иногда встречаются рекламные щиты, изображения на которых волшебным образом меняются, по мере того как мы движемся вдоль них. Делается это так. Два изображения раскладываются на множество тонких полосок, которые затем кладутся вперемешку, составляя композитное изображение. Затем это изображение накрывается своеобразной линзой — стеклянным листом с множеством вертикальных пазов, причем каждый паз размещается точно над двумя полосками. Пазы имеют такую форму, чтобы под одним углом видна была одна полоска, а под другим — другая. Поэтому, проходя мимо такой картины, мы видим, как одно изображение внезапно превращается в другое, а затем обратно. Трехмерное телевидение заменит неподвижные изображения в этой системе движущимися, и 3D-эффект будет достигаться без применения специальных очков.)
Но самый продвинутый вариант трехмерного изображения — это голограмма. Без всяких очков человек видит точный волновой фронт трехмерного изображения, как если бы изображенный объект в реальности находился перед вами. Голограммы известны уже несколько десятилетий (их можно увидеть на выставках, открытках и кредитных карточках) и нередко мелькают в фантастических фильмах. В «Звездных войнах» завязкой сюжета служит голографический призыв о помощи, посланный принцессой Леей членам Повстанческого альянса.
Проблема в том, что голограмму очень трудно изготовить.
При создании голограммы лазерный луч расщепляется на два. Один луч направляется на объект, изображение которого вы хотите получить, затем отражается и попадает на специальный экран. Второй луч направляется непосредственно на экран. Смешение двух этих лучей создает на экране сложную интерференционную картину, содержащую «застывшее» трехмерное изображение объекта; это изображение закрепляется на специальной пленке, покрывающей экран. Затем, если сквозь экран пропустить другой лазерный луч, в пространстве появится настоящее трехмерное изображение объекта.