Kniga-Online.club
» » » » Ричард Фейнман - 4a. Кинетика. Теплота. Звук

Ричард Фейнман - 4a. Кинетика. Теплота. Звук

Читать бесплатно Ричард Фейнман - 4a. Кинетика. Теплота. Звук. Жанр: Физика издательство неизвестно, год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

y=F(x-ct)+G(x+ct) (49.1)

будет общим решением для любой струны. Но нам, помимо этого, нужно еще удовлетворить условию неподвижности одного конца. Если в уравнении (49.1) мы положим х=0 и посмотрим, какие будут у в любой момент t, то получим y=F(-ct)+G(+ct). Но эта сумма должна быть нулем в любой момент времени, а это означает, что функция G(+ct) должна быть равна -F(-ct). Другими словами, функция G от некоторой величины должна быть равна функ­ции -F от той же величины со знаком минус. Подставляя снова полученный результат в уравнение (49.1), находим ре­шение поставленной задачи:

y=F(x-ct)-F(-x-ct). (49.2)

Ясно, что это выражение всегда даст y=0, если х поло­жить равным нулю.

На фиг. 49.1 представлена волна, идущая в отрицательном x-направлении вблизи точки х=0, и гипотетическая волна, идущая в противоположном направлении с обратным знаком и с другой стороны от начала координат.

Фиг. 49.1. Отражение от стенки как суперпозиция двух бегущих волн.

Я сказал «гипотетиче­ская», потому что с другой стороны, конечно, никакой колеб­лющейся струны нет. Истинное же движение струны должно рассматриваться как сумма этих двух волн в области положи­тельных х. Достигнув начала координат, они в точке х=0 полностью уничтожат друг друга, а затем вторая (отраженная) волна, идущая, разумеется, в противоположном направлении, окажется единственной волной в области положительных х. Эти результаты эквивалентны следующему утверждению: волна, достигнув защемленного конца струны, отражается от него с изменением знака. Такое отражение всегда можно понять, если представить себе, как нечто дошедшее до конца струны вылетит затем из-за стены «вверх ногами». Короче говоря, если мы предположим, что струна бесконечна и что, где бы ни находилась волна, бегущая в одном направлении, всегда существует симметричная ей относительно точки х=0 другая волна, бегущая в противоположном направлении, то в самой точке х=0 никакого перемещения не будет, а поэтому безразлично, защемлена ли струна в этом месте или нет.

Следующий наш пример — отражение периодической вол­ны. Предположим, что волна, описываемая функцией F(x-ct), представляет собой синусоидальную волну, которая затем от­ражается. Тогда отраженная волна -F(-х-ct) тоже будет синусоидальной волной той же частоты, но пойдет она в про­тивоположном направлении. Эту ситуацию проще всего опи­сать с помощью комплексных функций

F(x-ct)=eiw(t-x/c) и F(-х-ct)=eiwa(t+x/c).

Нетрудно убедиться, что если подставить их в выражение (49.2) и положить х=0, то в любой момент времени t переме­щение будет равно нулю и, следовательно, необходимое условие окажется выполненным. Воспользовавшись теперь свойством экспоненты, можно записать результат в более простом виде:

y=eiwt(e-iwx/c-eiwx/c)=-2ieiwtsin(wx/c). (49.3)

Мы получили нечто новое и интересное. Из этого решения ясно, что если мы посмотрим на любую точку х нашей струны, то увидим, что она осциллирует с частотой w. Совершенно неважно, где находится эта точка, все равно частота будет той же самой! Однако на струне есть такие места (где sin (wx/c)=0), которые вообще не перемещаются. Более того, если в любой момент времени t сделать моментальный снимок колеблющейся струны, то на фотографии получится синусоидальная волна, но величина ее амплитуды будет зависеть от времени t. Из выражения (49.3) можно видеть, что длина одного цикла сину­соидальной волны равна длине какой-либо из волн;

l=2pc/w. (49.4)

Неподвижные точки удовлетворяют условию sin(wx/c)=0, которое означает, что wx/c=0, p, 2p, ..., np, ... . Эти точки на­зываются узлами. Каждая точка между двумя соседними узлами движется синусоидально вверх и вниз, но способ ее движения остается фиксированным в пространстве. Это основная харак­теристика того, что называется собственным колебанием, гармоникой или модой. Если движение обладает тем свой­ством, что каждая точка предмета движется строго синусои­дально и все точки движутся с одинаковой частотой (хотя одни, может быть, больше, а другие меньше), то мы имеем дело с собственным колебанием.

§ 2. Волны в ограниченном пространстве и собственные частоты

Перейдем к обсуждению следующей интересной задачи. Что произойдет, если струну закрепить с двух концов, скажем в точках x=0 и x=L? Давайте начнем с идеи отражения волны, с некоего горба, движущегося в одном направлении. С тече­нием времени этот горб подойдет к одному концу струны и в конце концов превратится в небольшой всплеск, поскольку здесь он складывается с перевернутым ответным горбом, идущим с другой стороны. Наконец первый горб совсем исчезнет, а в обратном направлении побежит другой, «ответный» горб, и весь процесс повторится уже на другом конце. Как видите, задача решается совсем просто, впрочем здесь возникает интересный вопрос: можно ли в этом случае получить синусоидальную вол­ну (только что описанное решение периодично, но, разумеется, не синусоидально периодично). Давайте попытаемся «вставить» в нашу струну синусоидально периодическую волну. Если один конец струны закреплен, то мы знаем, что должно полу­читься нечто похожее на наше предыдущее решение (49.3). Но то же самое должно получиться и у второго конца, ведь он тоже закреплен. Поэтому единственная возможность полу­чить периодическое синусоидальное движение—это взять волну, которая в точности укладывается на длине струны. В против­ном случае мы не получим собственной частоты, с которой струна могла бы продолжать свои колебания. Короче говоря, если по струне пустить синусоидальную волну, которая в точности укладывается на ее длине, то она сохраняет свою идеальную синусообразную форму и будет гармонически колебаться с не­которой частотой.

Математически мы можем задать форму волны в виде функ­ции sinkx, где k=w/c, как и в уравнениях (49.3) и (49.4). Эта функция обращается в нуль при х=0, однако то же условие должно выполняться и на другом конце струны. Дело в том, что k уже не будет произвольным, как в случае полуограниченной струны. Оба конца могут быть закреплены при одном-единственном условии, что sinkL=0. Но чтобы синус был равен нулю, его угол должен быть кратен целому числу p, например 0, p, 2p и т. д. Поэтому уравнение

kL=np (49.5)

в зависимости от того целого числа, которое мы подставим в него, дает полный набор различных чисел k. При этом каждому числу k соответствует частота w, которая по формуле (49.3) равна просто

w=kc=npc/L. (49.6)

Итак, мы нашли, что синусоидальные колебания струны могут происходить только с некоторыми определенными часто­тами. Это — наиболее важная характеристика волн в ограни­ченной области. Сколь бы сложна ни была система, всегда ока­зывается, что в ней могут быть чисто синусоидальные колеба­ния, но частота их определяется свойствами данной системы и природой ее границ. В случае струны возможно множество раз­личных частот, каждой из которых соответствует определенное собственное колебание — движение, синусоидально повторяющее самое себя.

На фиг. 49.2 показаны первые три собственные гармоники нашей струны.

Фиг. 49.2. Первые три гар­моники колеблющейся струны.

Длина волны l первой из них равна 2L. В этом легко убедиться, продолжив волну до точки x=2L и получив полный цикл синусоидальной волны. Угловая частота w равна в общем случае 2pc, деленному на длину волны К, а поскольку сейчас у нас l=2L, то частота будет равна pс/b, что согласуется с формулой (49.6) при n=1. Обозначим эту частоту через w1 Следующая собственная гармоника напоми­нает бантик из двух петель с узлом посредине. Ее длина просто равна L. Соответствующая величина k, а следовательно, и ча­стота w должны быть вдвое большими, т. е частота равна 2w1. Частота третьей собственной гармоники оказывается рав­ной Зw1 и т. д. Таким образом, различные собственные гармо­ники кратны целому числу низшей частоты w1 т. е. w1, 2w1, Зw1 и т. д.

Перейти на страницу:

Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


4a. Кинетика. Теплота. Звук отзывы

Отзывы читателей о книге 4a. Кинетика. Теплота. Звук, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*