Новый ум короля: О компьютерах, мышлении и законах физики - Пенроуз Роджер
Что же касается (б), то для черной дыры с солнечной массой хокинговское время испарения имело бы величину, превосходящую нынешний возраст вселенной где-то в 1054; а для черных дыр бо́льших размеров оно оказалось бы еще более продолжительным. Таким образом, вряд ли эффект испарения может существенно изменить наши предыдущие рассуждения.
Чтобы иметь некоторое представление о гигантских величинах энтропии черных дыр, рассмотрим чернотельное фоновое излучение с температурой 2,7 К, которое, как долго казалось, давало наибольший вклад в энтропию вселенной. Астрофизики были просто ошарашены огромным количеством энтропии, заключенным в этом излучении, которое намного превосходило все значения энтропии, с которыми приходилось сталкиваться в других ситуациях (например, на Солнце). Энтропия фонового излучения составляет примерно 108 на один барион (здесь я снова перехожу к «естественной системе единиц», в которых постоянная Больцмана равна единице). (По сути, это означает, что на каждый барион приходится 108 фотонов фонового излучения.) Таким образом, если всего имеется 1080 барионов, то для полной энтропии фонового излучения во вселенной мы имели бы величину
1088.
Несомненно, что если бы не было черных дыр, то эта величина представляла бы собой практически всю энтропию вселенной, поскольку энтропия фонового излучения намного превосходит энтропию всех других обычных процессов. Так, например, энтропия, приходящаяся на один барион на Солнце, оказывается порядка единицы. С другой стороны, по меркам черных дыр, энтропия фонового излучения — это просто «писк комара». Для черной дыры в одну солнечную массу формула Бекенштейна— Хокинга дает нам значение энтропии около 1020 на один барион (в естественных единицах). И даже если бы вселенная состояла всего-навсего из одной черной дыры с массой Солнца, полная энтропия оказалась бы уже намного превосходящей приведенное ранее значение, а именно, была бы равной
10100.
Конечно, вселенная не устроена таким образом, но эта цифра определенно свидетельствует о том, насколько несущественной становится энтропия фонового излучения, когда мы начинаем учитывать влияние вездесущей гравитации.
А теперь попробуем сделать более реалистичную оценку. Вместо того, чтобы заселять наши галактики одними только черными дырами, примем, что эти галактики состоят, в основном, из обычных звезд — примерно 1011 штук в каждой и еще содержат в своей сердцевине около миллиона (106) черных дыр с массой солнца (что было бы вполне правдоподобно для нашей собственной Галактики — Млечного Пути). Вычисления показывают, что энтропия, приходящаяся на один барион, оказалась бы в этом случае существенно больше даже того огромного значения, которое было только что получено — она стала бы равной 1021, что для полной энтропии дает (в естественных единицах) величину, равную примерно
10101.
Мы можем предположить, что, по истечении достаточно большого промежутка времени, подавляющая часть галактических масс окажется захваченной черными дырами в центрах галактик. Когда это произойдет, энтропия в расчете на один барион станет равной 1031, что дает чудовищное значение для полной энтропии:
10111.
Мы, однако, рассматриваем замкнутую вселенную, которая, в конце концов, должна сколлапсировать; и было бы вполне разумно оценить энтропию конечного коллапса, используя формулу Бекенштейна — Хокинга и полагая при этом, что вся вселенная в момент коллапса представляет собой одну черную дыру. Такая оценка дает величину энтропии на один барион около 1043 и совершенно немыслимую величину полной энтропии для конечного коллапса:
10123.
Это число мы будем рассматривать как некоторую оценку полного объема фазового пространства V, доступного для Творца, поскольку эта энтропия должна представлять собой логарифм объема (несомненно) наибольшей его части. Поскольку 10123 есть логарифм объема, сам объем должен представлять собой экспоненту от 10123, т. е.
в естественных единицах! (Некоторые особо внимательные читатели могли заметить, что я должен был написать
— но для чисел такого порядка разница между основаниями е и 10 совершенно несущественна!) А каков был исходный объем фазового пространства, на который должен был нацелиться Творец, чтобы сотворить вселенную, совместимую со вторым началом термодинамики? Оказывается, что совершенно не важно, какое выбрать значение
определяемое галактическими черными дырами или фоновым излучением соответственно, а, может быть, даже еще меньшее (и, на самом деле, более вероятное), которое могло иметь место в реальных условиях при Большом взрыве.
В любом случае, значение отношения V к W будет приблизительно:
(Проверьте сами:
дает с хорошим приближением
.)
Эта величина свидетельствует о том, насколько точным должен был быть замысел Творца: точность составляла примерно одну
— ую! Это поразительная точность. Полученную цифру нельзя даже полностью выписать в обычной десятичной системе исчисления: она представляла бы собой «1» с последующими 10123 нулями! Даже если бы мы были в состоянии записать «0» на каждом протоне и каждом нейтроне во вселенной, а также использовали бы для этой цели все остальные частицы, наше число, тем не менее, осталось бы недописанным.
Точность, необходимая для задания начальных условий вселенной, как видно, совершенно несоизмерима с той весьма высокой точностью, которая уже стала привычной, когда речь заходит о динамических уравнениях (Ньютона, Максвелла, Эйнштейна), управляющих поведением физических объектов в различных ситуациях.
Но почему же Большой взрыв был организован с такой высокой степенью точности, в то время как большой коллапс (или сингулярности черных дыр) должен быть совершенно хаотичным? Может показаться, что этот вопрос стоило бы переформулировать в терминах поведения ВЕЙЛЬ-части пространственно-временно́й кривизны в пространственно-временно́й сингулярности. Мы установили, что имеется ограничение
ВЕЙЛЬ = 0
(или нечто похожее) в сингулярностях начального типа, отсутствующее в конечных сингулярностях — и, кажется, именно оно отражает выбор Творцом соответствующей крошечной области фазового пространства. Предположение о том, что такое ограничение применимо к любой начальной (но не конечной!) сингулярности, я назвал бы Гипотезой Вейлевской Кривизны. Таким образом, напрашивается вывод, что нам осталось понять лишь одну вещь для окончательного разрешения вопроса о происхождении второго начала термодинамики, а именно: почему мы должны использовать такую несимметричную во времени гипотезу?[187]
Но как нам преодолеть это (последнее?) препятствие на пути к полному пониманию причины существования второго начала? Кажется, мы попали в безвыходное положение. Нам необходимо понять, почему пространственно-временны́е сингулярности имеют определенную структуру; но пространственно-временны́е сингулярности представляют собой как раз те области, в которых наше понимание физики достигает своих пределов. Этот тупик, связанный с существованием пространственно-временны́х сингулярностей, иногда сравнивают с другим тупиком: он имел место в начале XX века и был связан с проблемой устойчивости атомов (см.: Главу 6. «Проблемы с классической теорией»). В каждом из этих случаев хорошо обоснованная классическая теория приводит к ответу «бесконечность» и обнаруживает, тем самым, свою несостоятельность для решения соответствующей проблемы.