Вольдемар Смилга - Очевидное? Нет, еще неизведанное…
Вот что писал о времени Ньютон: «Абсолютное, истинное, математическое время само по себе и по своей сущности без всякого отношения к чему-либо внешнему протекает равномерно и иначе называется длительностью».
«Относительное, кажущееся или обыденное время есть или точная, или изменчивая, постигаемая чувствами, внешняя, совершаемая при посредстве какого-либо движения мера продолжительности, употребляемая в обыденной жизни вместо истинного математического времени, как-то: час, день, месяц, год».
И еще очень интересное для нас замечание:
«Дело в том, что естественные солнечные сутки, которые мы обыкновенно как меры времени считаем равными, в действительности не равны».
Это определение абсолютного времени великолепно иллюстрирует, как Ньютон-философ противоречит Ньютону-физику.
Ньютон-физик признает только те физические понятия, которые можно реально исследовать. Ньютон-философ навязывает Ньютону-физику совершенно бессодержательное понятие абсолютного времени, причем само определение исключает возможность сказать что-либо об этом времени. Та же самая история повторяется при определении понятия пространства.
Ньютон-физик в таких вопросах безмолвствует и утешается только тем, что эти понятия он, по существу, не использует при решении конкретных задач. Впрочем, иногда физик позволяет себе скептические замечания, которые совсем не вяжутся со взглядами философа, но философ быстро призывает его к порядку.
Надо заметить, что ньютоновское абсолютное время введено крайне неудачно и с философской точки зрения, поскольку, если верить Ньютону, время никак не связано с материей.
Используя опыт определения понятия длины, мы сравнительно просто расправимся и с временем. Будем действовать по аналогии.
Прежде всего нам необходим эталон времени, аналог масштабного стержня.
Чтобы иметь эталон времени, мы должны взять какой-либо физический процесс (например, вращение Земли вокруг своей оси) и объявить: «Длительность этого процесса и есть единица времени».
Стоит еще раз напомнить, что речь идет о, так сказать, «физическом», а не о философском определении времени.Так мы создаем часы — эталон. Причем эталон времени, так же как эталон длины, обязан сохранять постоянными свои свойства, должен оставаться неизменным.
Иными словами, чтобы создать часы, мы должны взять за основу такой физический процесс, который можно тождественно повторить сколь угодно большое число раз. И безразлично, повторяется ли этот процесс сам по себе, по своей природе (как вращение Земли вокруг своей оси), или мы искусственно можем создать условия повторяемости (часы с маятником).
Как видите, определение эталона времени очень сходно с определением эталона длины.
Имея эталон времени, мы, естественно, должны сформулировать рецепт измерения времени. И уж после этого можно облегченно вздохнуть.
Но прежде чем давать рецепт, вспомним замечание Ньютона:
«Естественные солнечные сутки[12], которые мы считаем равными, в действительности не равны».
Начинается детальный и кропотливый анализ, казалось бы, совершенно ясного вопроса, и, естественно, все усложняется.После сказанного выше эти слова не очень понятны — ведь если за эталон времени мы взяли солнечные сутки, то тем самым мы решили, что они равны между собой по определению.
Тогда бессмысленно как будто ставить так вопрос: «Равны между собой сутки в действительности или нет?»
Но не будем торопиться с выводом. Уже несколько раз упоминалось, что существеннейшее требование, предъявляемое к эталону, — неизменность его свойств. И пожалуй, давно пора ответить на вопрос, который, вероятно, возник у многих.
Как установить, что свойства эталона (например, длина эталона длины) изменились или остались неизменными? И вообще какой смысл вкладываем мы в эти слова? Что значит «остались неизменными»? По отношению к чему?
Ставится, вероятно, неожиданный, но существенный вопрос.Ведь эталон сам определяет единицу измерения той или иной физической величины, и ему мы обязаны верить в первую очередь. Предъявив реальный предмет — единицу измерения, мы тем самым кладем конец всяким разговорам. Можно считать, что парижский метр, по определению, останется единицей длины, даже если он, например, расширится от нагревания.
И такое решение будет совершенно логично.
Однако часто построения, безукоризненные с точки зрения логики, могут не иметь ничего общего с реальным миром. Самые яркие тому примеры дает математика. Можно построить очень много логически безупречных геометрий, но в реальном мире осуществляется какая-то одна-единственная.
Поэтому если эталон длины — метр — вдруг перестанет совпадать со всеми своими копиями, а между копиями по-прежнему будет царить полное согласие, физик скажет, что его эталон в действительности испортился, и выберет новый.
Но заметить, что свойства эталона изменились, можно только одним путем — сверить эталон по объектам, в неизменности свойств которых нет оснований сомневаться. Если будет получен новый результат — значит эталон изменился. Поясним примером.
Если представить себе десяток трехлетних ребятишек, выбравших за неизменный эталон длины рост одного из своих сверстников, то с их точки зрения может оказаться, что рост любого члена компании остается почти неизменным. Более того, если выбранный ими «эталон» станет опережать остальных в росте, они будут горестно утверждать, что их рост уменьшается.
Но довольно скоро они заметят, что все окружающие предметы: стулья, столы, родители, комната, собаки — становятся как бы меньше (точнее, не такими большими). Тогда наиболее толковый заключит и, вероятно, быстро убедит остальных, что «на самом деле» все они растут. Старый «эталон» будет свергнут, и они выберут новый: например, за эталон возьмут отметку на двери, сделанную отцом.
Причем расстояние от пола до этой отметки они будут считать строго неизменным, поскольку соотношение между этим расстоянием и окружающими предметами не будет нарушаться.
В принципе точно так же рассуждают и ученые.
Под руками у физика сотни самых разнообразных предметов, соотношения между которыми ему известны. Если говорить о длине, то ученые располагают парижским метром, десятками его копий и сотнями и тысячами объектов, длина которых измерена эталоном. Например, длина земного меридиана приблизительно равна 40 000 000 эталонов длины. И это соотношение изменится только в том случае, если изменит свои свойства либо Земля, либо метр.
Пусть прямыми измерениями когда-то были установлены соотношения между эталоном длины и самыми разнообразными по своим свойствам объектами (длины волн в спектре атомов, длина земного меридиана, копии метра и т. д.).
Если эти соотношения между всеми объектами остаются неизменными, можно утверждать, что длина каждого объекта неизменна.
Действительно, все соотношения остаются неизменными, поэтому если длина и изменяется, то совершенно идентично у всех изучаемых предметов. А нет никаких оснований думать, что есть какая-то скрытая причина, которая совершенно единообразно (пропорционально) изменяет длину самых разнородных по своей природе объектов.
Уместно вспомнить слова Ньютона: «Скрытым свойствам нет места в натуральной философии!»
Напротив, если нарушится соотношение между одной из копий эталона со всеми остальными, мы говорим, что данная копия эталона изменила свои свойства.
В целях удобства один из таких объектов объявляется «главным» эталоном, а остальные — его копиями.
Но если нарушатся соотношения между «главным» эталоном и его копиями, мы скажем, что его свойства изменились, и поступим так же, как мальчишки, о которых шел разговор, — за эталон длины выберем какую-нибудь из копий.
Конечно, все только что сказанное относится не только к длине, но и ко времени и вообще ко всем основным физическим величинам.
Итак, по существу, физик имеет не один эталон длины, времени и т. п., а целое семейство эталонов. Причем замечательно, что его члены должны иметь как можно меньше физического родства. Пока в «семье» царит согласие, мы говорим, что свойства каждого члена остаются неизменными. Если мы, исследуя новый физический объект, замечаем, что соотношения между ним и каждым членом семьи эталонов остаются неизменными, эталоны принимают его в свою фамилию.
Но как только один из «родственников» нарушает согласие, его безжалостно выкидывают на улицу.
Поэтому можно сказать: «Длина предмета изменилась в действительности, если изменились соотношения между каким-либо предметом и всем семейством эталонов длины».