Брайан Грин - Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории
Представление такого бесструктурного исходного состояния, в котором нет понятий пространства и времени в обычном смысле, требует предельного напряжения ума у большинства людей (во всяком случае, у меня). Как в шутке Стивена Райта о фотографе, одержимом идеей получить снимок горизонта с близкого расстояния, мы вынуждены бороться со столкновением парадигм, когда пытаемся представить себе Вселенную, которая есть, но в которой каким-то образом не используются понятия пространства и времени. Тем не менее, вероятно, что нам придётся привыкнуть к таким понятиям и осознать их смысл ещё до того, как мы сможем полностью оценить теорию струн. Причина состоит в том, что современная формулировка теории струн заранее предполагает существование пространства и времени, в котором струны (и другие объекты M-теории) движутся и вибрируют. Это позволяет вывести физические свойства теории струн во Вселенной с одним временным измерением, определённым числом развёрнутых пространственных измерений (обычно равным трём) и определённым числом дополнительных измерений, которые свёрнуты в одну из конфигураций, допускаемых уравнениями движения теории. Такой вывод, однако, подобен оценке творческих способностей художницы, которую для этого заставляют раскрашивать детские «раскраски». Без сомнения, она внесёт персональное своеобразие в отдельные фрагменты, но при столь жёстких ограничениях на стиль живописи для нас откроется лишь доля её таланта. Аналогично, так как триумфом теории струн было естественное объединение квантовой механики и гравитации и так как гравитация связана с формой пространства и времени, мы не должны ограничивать теорию, заставляя её действовать в уже существующих рамках пространства-времени. Вместо этого, так же, как мы должны позволить нашей художнице работать с чистого листа, мы должны позволить теории струн создавать её собственную пространственно-временную арену, начиная с конфигурации, в которой пространство и время отсутствуют.
Есть надежда на то, что в теории, описывающей ход эволюции Вселенной с этой начальной точки (возможно, в эпоху до Большого взрыва, если, конечно, можно использовать временны́е термины — в отсутствие других лингвистических конструкций), возникнет фон когерентных колебаний струн, порождающий стандартные понятия пространства и времени. В таком подходе, если его удастся реализовать, пространство, время и, соответственно, размерность не являлись бы определяющими элементами Вселенной. Они были бы лишь удобными понятиями, вытекающими из существования более фундаментального первичного состояния.
Последние исследования по M-теории, возглавляемые Стивеном Шенкером, Эдвардом Виттеном, Томом Бэнксом, Вилли Фишлером, Леонардом Сасскиндом и многими другими, уже сейчас показывают, что некоторое представление о мире без пространства и времени может дать нечто, известное под названием нуль-брана. Этот объект, возможно, является наиболее фундаментальным в M-теории; на больших расстояниях он ведёт себя подобно точечной частице, однако на малых расстояниях его свойства совершенно иные. Исследования показали, что на масштабах, меньших планковских, нуль-браны, как и струны, демонстрируют нам неадекватность общепринятых понятий пространства и времени, однако при этом они позволяют взглянуть сквозь крошечное окошко на новый необычный мир, который там существует. Исследования с этими нуль-бранами показывают, что обычная геометрия заменяется новым аппаратом, известным под названием некоммутативная геометрия — областью математики, основы которой были разработаны французским математиком Аланом Конном.{110}
В этом геометрическом подходе общепринятые понятия пространства и расстояния между точками уступают своё место совершенно иному набору понятий. Физики показали, однако, что если мы будем работать с расстояниями, бо́льшими планковской длины, стандартное представление о пространстве-времени действительно восстановится. Возможно, подходу некоммутативной геометрии всё же недостаёт существенных моментов для описания самого изначального состояния, однако в нём уже содержится намёк на то, что должно входить в более полный формализм для исследования пространства и времени.
Нахождение корректного математического аппарата для формулировки теории струн без обращения к изначальным понятиям пространства и времени является одной из наиболее важных задач, с которыми сталкиваются теоретики. Разобравшись в том, как возникает пространство и время, мы могли бы сделать огромный шаг к ответу на ключевой вопрос, какая геометрическая структура возникает на самом деле.
Приведёт ли теория струн к переформулировке квантовой механики?
Вселенная подчиняется законам квантовой механики с фантастической точностью. Однако даже с учётом этого, при формулировке теорий за последние полвека физики следовали, конструктивно говоря, стратегии, в которой квантовой механике отводилось несколько второстепенная роль. При разработке теорий физики часто начинают исследование на чисто классическом языке, в котором игнорируются квантовые распределения вероятностей, волновые функции и т. д., на языке, который был бы понятен физикам времён Максвелла и даже времён Ньютона, и затем накладывают квантовые концепции на классические идеи. Этот подход не является чем-то удивительным, так как он прямо отражает наше восприятие. На первый взгляд, природой правят законы, коренящиеся в классических представлениях, таких, как частица, имеющая определённое положение и определённую скорость в любой заданный момент времени. Только после детальных исследований микромира мы осознали, что должны модифицировать эти знакомые классические идеи. Процесс развития науки прошёл эволюцию от классического подхода до подхода, модифицированного квантовыми результатами, что и по сей день находит своё отражение в том, как физики разрабатывают новые теории.
Это, естественно, касается и теории струн. Математический формализм, описывающий теорию струн, начинается с уравнений, описывающих движение крошечного, бесконечно тонкого куска классической нити, которые, в принципе, мог написать ещё Ньютон триста лет назад. Затем эти уравнения квантуются. Иными словами, в систематическом подходе, развитом физиками в течение более 50 лет, классические уравнения преобразуются в квантово-механические, куда естественным образом включены вероятности, неопределённость, квантовые флуктуации и т. д. Фактически, в главе 12 мы видели эту процедуру в действии: в петлевых процессах (см. рис. 12.6) используются квантовые понятия (в данном случае, мгновенное квантово-механическое рождение пар виртуальных струн), а число петель определяет точность, с которой учтены квантово-механические эффекты.
Стратегия, в которой сначала используется классическое теоретическое описание, а затем включаются квантово-механические эффекты, в течение многих лет являлась в высшей степени плодотворной. В частности, именно она лежит в основе стандартной модели физики частиц. Однако возможно и, судя по последним результатам, вероятно, что подобный метод слишком консервативен для обращения с теориями такого высокого полёта, как теория струн и M-теория. Причина состоит в том, что коль скоро мы осознали, что Вселенной управляют квантово-механические принципы, наши теории должны являться квантово-механическими с самого начала. Ранее нам успешно удавалось менять классическую точку зрения на квантовую, поскольку мы зондировали Вселенную недостаточно глубоко, чтобы этот грубый подход нас подводил. Однако, учитывая глубину теории струн/M-теории, мы вполне можем подойти к последней черте этой проверенной на практике стратегии.
Особые основания для этого возникают при пересмотре некоторых результатов второй революции в теории суперструн (подытоженных на рис. 12.11). Как мы обсуждали в главе 12, дуальности, лежащие в основе пяти струнных теорий, говорят о том, что физические процессы, происходящие в одной формулировке теории струн, могут быть переформулированы на языке любой из остальных. На первый взгляд, это перефразированная формулировка имеет мало общего с исходным описанием, но в этом и состоит сила дуальности: дуальность позволяет описывать один и тот же физический процесс несколькими совершенно различными способами. Эти результаты нетривиальны и удивительны, однако мы ещё не упомянули об их следствии, которое, возможно, важнее всего.
Процесс в одной из пяти теорий струн, который сильно зависит от квантовых эффектов (например, включающий струнные взаимодействия, которые не могли бы произойти в мире, управляемом классическими, а не квантовыми законами), преобразованиями дуальности может быть часто сведён к процессу, слабо зависящему от квантовых эффектов с точки зрения других теорий струн (например, к процессу, характеристики которого уточняются с учётом квантовых поправок, но качественная форма которого напоминает то, что могло происходить в чисто классическом мире). Это означает, что квантовая механика тесно переплетается с симметриями дуальности, лежащими в основе теории струн/M-теории: они являются неотъемлемыми квантово-механическими симметриями, так как одно из дуальных описаний сильно зависит от квантового рассмотрения. Из этого с необходимостью следует, что полная формулировка теории струн/M-теории, которая в основе своей включает обнаруженные симметрии дуальности, не может начинаться с классического рассмотрения, а затем подвергаться квантованию, как в обычном подходе. Если начинать с классической формулировки, то симметрии дуальности неизбежно будут упущены, так как они имеют место только в случае, если квантовые эффекты принимаются во внимание. Вместо этого оказывается, что полная формулировка теории струн/M-теории должна разрушить традиционный подход и дать жизнь полновесной квантово-механической теории.