Нанонауки. Невидимая революция - Жоаким Кристиан
Вернемся пока к электронике с ее интегральными схемами и транзисторами. Мы уже говорили о токах утечки, превращающихся в транзисторах размером 65 нм в досадную неприятность. А если размер уменьшается до 20 нм и более того — а именно такие сейчас разрабатываются в лабораториях, — то все становится еще хуже! Транзисторы отказываются работать. И не потому, что неправильно сделаны, — дело в архитектуре самого транзистора. Уж слишком малы расстояния, электроны неминуемо отрываются от управляющего электрода — и попадают в канал транзистора. Чтобы предупредить такие утечки, инженерам приходится пускаться во все тяжкие, выдумывая цирковые трюки и с пониманием (теоретической моделью) транзистора, и с его производством. Сегодня уже можно наладить крупносерийное производство транзисторов размером в 45 нм, правда, требуется не менее четырех этапов технологического процесса. А дальше что? Электроны станут разбегаться как крысы с тонущего корабля при малейшем признаке опасности: словом, так или иначе, дальнейшая миниатюризация транзисторов надолго затормозится. На таких расстояниях в любой электрической реакции появляется квантовая составляющая, и, значит, поведение маленьких электрических проводников становится непредсказуемым, поскольку квантовые явления имеют вероятностную природу. Иначе говоря, вся микроэлектроника, та, что была до недавнего времени, приобретает неузнаваемый облик.
Но что это за квант такой, без которого почему-то человечество сегодня не в силах обойтись? В 1900 году немецкий физик Макс Планк предположил, что в мире «внизу», то есть на очень малых расстояниях, изменение энергии происходит не непрерывно, как в макроскопическом мире, а скачками или порциями. Вот этот кусочек энергии, на который уменьшается или увеличивается ее текущее значение, он и назвал квантом. Приращение или падение энергии обязательно кратно некоему числу — кванту (или количеству действия); это число — универсальная, одна и та же для всей Вселенной константа, и называется она постоянной Планка. Поэтому, если электрон, например, входит в некоторый атом, его энергия не может быть какой угодно, она квантована, то есть какие-то значения энергии для него запрещены — их просто не может быть, потому что не может быть никогда. Чтобы как-то объяснить эту ступенчатость или прерывистость энергии, ученые начала XX века не нашли ничего лучшего, кроме сопоставления электрона с волной. Атом удерживает свой электрон — и электрон сидит себе в атоме, как в ловушке. Или как гвоздь в ящике. Только это не гвоздь, а волна. Не всякая волна поместится в ящике: она же будет отражаться от его стенок, и потому длина волны не может быть какой угодно: вот, гитара, например, — это же ящик со струнами, правда? Каждая струна издает одну и ту же ноту (звуковое колебание одной и той же частоты). Меняя натяжение струны, прижимая ее к грифу, можно изменить звук, но непроизвольно — и у разных струн при одном и том же зажиме изменение длины волны будет разным (в ящике — акустическом резонаторе — не всякая волна «поместится»). Вот так и электрон: его энергия в малюсенькой коробочке атома не может быть какой угодно. Другое следствие волновой природы электрона еще удивительнее: нельзя точно указать место, где внутри атома находится этот самый электрон. Существует только вероятностная локализация, то есть мы способны узнать лишь вероятность нахождения электрона в том или ином месте.
Итак, электрон — одновременно и волна и частица. Эта идея вызвала настоящую бурю в физике твердого тела: оказалось, что с приближением одного из трех размеров объема твердого тела (длины, ширины или высоты) к длине волны, ассоциируемой с электроном, начинают проявляться квантовые эффекты. Они заметны уже в крупных транзисторах, но там подобные феномены смазывались большим количеством атомов: квантово-волновые явления, производимые отдельным атомом, складывались с такими же явлениями, генерируемыми другими атомами, и часто гасили друг друга, так что на суммарный эффект можно было не обращать внимания. Это похоже на большой оркестр, в котором каждый инструмент выводит свою ноту независимо от других инструментов; в результате получается не мелодия, а какой-то беспорядочный шум, даже не обязательно громкий.
В очень маленьких устройствах не так: квантовые явления уже не компенсируют друг друга. Из их изучения родилось новое направление — мезоскопическая физика. Размеры подобных приборчиков находятся в пределах от нескольких десятков до нескольких сотен нанометров. Значит, они где-то в промежутке между атомными и макроскопическими расстояниями, отсюда приставка мезо-, посредине, а счет атомов идет на миллионы. Следовательно, в мезофизике квантовые волны электронов (или ассоциированные с электронами) еще путаются, то есть гасят («маскируют») друг друга. Однако здесь, в отличие от макроскопического оборудования, один из факторов путаницы уже не действует. В итоге, когда величина прибора становится меньше свободного пробега электронов (так называется среднее расстояние, преодолеваемое электроном за время между двумя столкновениями), вероятность столкновения с вибрациями атомов падает, словно бы у электронов не остается времени на взаимодействие с себе подобными. И эти колебания атомов уже не компенсируют друг друга, а выступают единым фронтом: словно бы есть одна-единственная волна, колебание, соответствующее большому количеству электронов, — как будто бы из душераздирающей какофонии расстроенного оркестра родился некий аккорд, силы которого хватило, чтобы заставить все инструменты оркестра звучать в унисон.
Углеродные нанотрубки обозначили границу между этой мезоскопической физикой и нанофизикой, до которой мы еще не добрались, а сделаем мы это в следующей главе.
В 1991 году были открыты трубочки из углерода диаметром от нескольких нанометров до десятков нанометров. Длина нанотрубки может доходить до нескольких микрон. Формируются они из листочков графита, которые скручиваются сами, примерно так, как скручиваются блинчики на сковородке. Как только их обнаружили, так сразу же многие стали облизываться на этакое чудо: трубочки оказались очень прочными, имели свойства проводников или полупроводников, как уж получится, и отличались повышенной теплопроводностью. Исследователи спешили проверить, а не получится ли из нанотрубки проводник в микросхеме или канал транзистора нового типа. Электронов в трубке много, а длина ее намного (в тысячи раз) превышает ее диаметр, и потому электрический ток циркулирует по всем классическим правилам: выполняется закон Ома! Вовсе не так обстоят дела в сечении трубки, ведь в ее диаметр уложится всего лишь несколько длин электронных волн. Значит, чтобы понять электронные качества углеродной нанотрубки, надо в одно и то же время учитывать как классические свойства, так и квантовые выходки электронов проводимости, то есть тех электронов, которые есть в трубке.
Устройства иного рода, механические, так называемые протеиновые двигатели, тоже оказались на границе между мезо- и нанофизикой. Протеиновый двигатель — это такое нагромождение белков, которое в клетках превращает химическую энергию в работу. В любом белке белкового двигателя тысячи атомов. Местонахождением этих атомов в пространстве ведают законы квантовой физики. Любой химической связи в белке соответствует колебание некоторого рода и, значит, некая квантовая волна. Поскольку белок — это множество химических связей, по-разному вибрирующих, то все квантовые волны, соответствующие каждому из колебаний каждой химической связи, никак не проявляются в суммарном движении белка. Как и в твердом теле, квантовые волны колебаний накладываются друг на друга — и гасятся, «смазываются». Механические свойства деформируемого белка выглядят почти классическими: белковая молекула может вращаться или перемещаться, совершая движения в пространстве. Нагромождение белков, образующих протеиновый двигатель, будет совершать вращательное движение, выглядящее классическим, что уже наблюдалось в предварительных экспериментах, в которых подобные двигатели испытывались «в пробирке» (in vitro).