Kniga-Online.club
» » » » Фейс Куртис - Путь Черепах. Из дилетантов в легендарные трейдеры

Фейс Куртис - Путь Черепах. Из дилетантов в легендарные трейдеры

Читать бесплатно Фейс Куртис - Путь Черепах. Из дилетантов в легендарные трейдеры. Жанр: Деловая литература издательство неизвестно, год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

Рисунок 12-1. Эффект воздействия изменения начальной и конечной даты на CAGR%

Заметьте, что наклон линии, называемой «Измененные даты теста», круче, чем наклон линии под названием «Первоначальные даты теста». В данном случае в начале тестируемого периода (январь 1996 года) произошло падение, также падение наблюдалось в мае и июне 2006 года, последних месяцах первоначального периода. Соответственно, сдвигая даты теста на несколько месяцев, мы смогли избавиться от результатов обоих падений. Это отмечено на рисунке 12-1: убрав падение на любом этапе теста, мы повысим наклон линии, определяющей CAGR%.

Регрессированная годовая отдача (RAR%)

Более подходящим методом оценки наклона является простая линейная регрессия каждой точки на каждой линии. Для тех читателей, которые не любят математику, поясню, что линейная регрессия – это просто мудреное название того, что именуется линией полного соответствия. Представьте себе прямую линию, проходящую через центр всех точек, как если бы вы убрали все выпуклости на графике, растянув их за края, не меняя общего направления линии.

Линия линейной регрессии и соответствующий показатель отдачи создают возможность для формирования нового показателя, который я называю регрессированной годовой отдачей (Regressed Annual Return, RAR%). Этот показатель в гораздо меньшей степени чувствителен к изменениям данных в конце теста. На рисунке 12-2 показано, что при применении RAR% наклон линии практически не меняется при изменении конечной точки.

Если мы теперь повторим тестирование, проведенное ранее, то заметим, что показатель RAR% менее зависим от изменений периода тестирования, потому что у обеих линий наблюдается примерно одинаковый наклон. RAR% для первоначального теста составляет 54,67 процента, а для теста с измененными датами он составляет 54,78 процента, что всего на 0,11 процента выше. Сравните эти результаты с результатами CAGR%, изменившимися на целых 3 процента, с 43,2 до 46,2 процента. В рамках данного теста CAGR% был почти в 30 раз более чувствителен к изменению конечных дат.

Рисунок 12-2. Эффект воздействия изменения начальной и конечной даты на RAR%

Значение среднемесячной отдачи, используемое при расчете коэффициента Шарпа, также зависит от изменений дат, так как мы исключаем из тестирования три последних плохих месяца, а это влияет на среднюю отдачу, хотя и в меньшей степени, чем на CAGR%. Лучшим показателем для числителя мог бы стать RAR%.

Как было отмечено ранее, компонент, связанный с величиной максимального падения в расчете коэффициента MAR, также чувствителен к датам начала и окончания теста. Если крупное падение происходит в начале тестового периода или ближе к его окончанию, показатель MAR изменится достаточно существенно. Показатель максимального падения – это лишь одна точка на кривой капитала; соответственно, для корректных расчетов нам не хватает существенного объема данных. Наилучшим показателем является тот, который включает больше значений падения. Гораздо сложнее торговать по системе, в которой было пять крупных падений на уровне 32, 34, 35, 35 и 36 процентов, чем по системе, в которой падения были на уровне 20, 25, 26, 29 и 36 процентов.

Более того, глубина падения – это лишь одно измерение. Все 30-процентные падения неодинаковы. Я обращаю меньше внимания на недавнее падение, которое продолжалось всего два месяца, чем на падение, которое продолжалось два года, пока рынок не вернулся к прежним значениям. Период возвращения к прежнему значению (продолжительность падения) важен сам по себе.

R-cubed – новое соотношение риска и доходности

Чтобы учесть все эти факторы, я создал новый показатель измерения соотношения риск/доходность, который назвал устойчивым показателем соотношения риск/доходность (Robust Risk/Reward Ratio, или RRRR). Я также называю его R-cubed (или R в кубе) – просто потому, что люблю дурацкие псевдонаучные названия. R-cubed использует в качестве числителя RAR%, а в качестве знаменателя – новый показатель, который я называю средним максимальным падением с учетом продолжительности. В этом показателе присутствуют два компонента – величина среднего максимального падения и приведенная продолжительность.

Среднее максимальное падение высчитывается путем сложения показателей пяти максимальных падений и деления результата на 5. Приведенная продолжительность рассчитывается путем деления среднего максимального падения в днях на 365 и последующего умножения полученного показателя на величину среднего максимального падения. Величина среднего максимального падения рассчитывается по тому же алгоритму: мы берем величины пяти максимальных падений, складываем и делим на 5. Соответственно, если RAR% составляет 50 процентов, среднее максимальное падение составляет 25 процентов, а средняя продолжительность максимального падения составляла один год, или 365 дней, значение R-cubed должно составлять 2,0, или 50 % / (25 % x 365 / 365). R-cubed – это соотношение риска/доходности, которое оценивает риск с точки зрения как жесткости, так и перспектив продолжительности. Такое вычисление возможно благодаря использованию показателей, менее чувствительных к изменению дат начала и окончания тестовых периодов. Этот показатель более устойчив, чем MAR, так как очень слабо реагирует на небольшие корректировки в условиях теста.

Устойчивый коэффициент Шарпа (Robust Sharpe Ratio)

Устойчивый коэффициент Шарпа выводится путем деления RAR% на стандартное отклонение ежемесячной отдачи, нормализованное по году. Этот показатель менее зависим от изменений периода тестирования по тем же причинам, по которым RAR% отличается от CAGR%, как было показано выше. Таблица 12-1 свидетельствует, что сильные показатели существенно менее зависимы от изменений конечных дат тестового периода.

Таблица 12-1. Обычные и устойчивые показатели

Copyright 2006 Trading Blox, все права защищены.

Как видим, устойчивые показатели менее чувствительны, чем общепринятые показатели. Показатель R-cubed зависим от добавления или исключения величин крупных падений, но в меньшей степени, чем коэффициент MAR. При расчете показателя R-cubed влияние отдельного падения размывается путем усреднения. Все устойчивые показатели были в меньшей степени подвержены влиянию изменений в наборе данных, чем сравниваемые с ними показатели. Если бы в рамках теста не менялась величина максимального падения, то показатель R-cubed показал бы то же самое изменение в 0,4 процента, что и RAR%, и это сделало бы различия между показателями еще более существенными: MAR изменился бы на 5,2 процента (на ту же величину, что и CAGR% – его числитель), a R-cubed – всего на 0,4 процента.

Еще одним примером того, как устойчивые показатели выигрывают по сравнению с традиционными, является сравнение результатов деятельности шести базовых систем, описанное нами в главе 7. Если вы помните, при включении дополнительных пяти месяцев (июль – ноябрь 2006 года) мы столкнулись с существенным ухудшением показателей отдачи. Таблицы 12-2 и 12-3 демонстрируют, что устойчивые показатели гораздо лучше выдержали существенные колебания последних нескольких месяцев.

Таблица 12-2 показывает изменения RAR% по сравнению с изменением CAGR% для этих систем.

RAR% изменился в шесть раз меньше, чем CAGR% за тот же период времени. Это свидетельствует о том, что RAR% гораздо более устойчивый показатель, чем CAGR%, а значит, он будет более стабилен в ходе трейдинга. То же самое справедливо для R-cubed, соотношения риска и доходности, по сравнению с его более слабым собратом – коэффициентом MAR.

Таблица 12-3 показывает процентные изменения R-cubed по сравнению с процентными изменениями MAR для тех же систем.

Таблица 12-2. Устойчивость RAR% по сравнению с CAGR%

Таблица 12-3. Устойчивость R-cubed по сравнению с MAR

R-cubed за указанный период изменился в два раза меньше, чем MAR.

Устойчивые показатели также менее зависимы от эффекта удачи. Например, трейдер, оказавшийся в отпуске и пропустивший крупнейшее падение, получит более высокое значение MAR по сравнению со своими коллегами. Это будет заметно при расчете R-cubed, так как данное обстоятельство не окажет значительного влияния на его расчет. Если вы используете неустойчивые показатели, то велик шанс получить хорошие результаты тестирования, обусловленные удачей, а не последовательным поведением на рынке, – и это еще одна причина использовать устойчивые показатели.

Использование устойчивых показателей также позволит вам избежать подгонки, так как эти показатели в меньшей степени будут зависеть от больших изменений результата, связанных с небольшим количеством событий. Давайте рассмотрим ситуацию применения правил для улучшения нашей системы двойного скользящего среднего, ранее описанной при обсуждении подгонки. Правило, введенное для уменьшения размера падения, улучшило величину показателя CAGR% с 41,4 до 45,7 процентов (то есть на 10,3 процента), а коэффициент MAR – на 60 процентов (с 0,74 до 1,17). В отличие от него показатель RAR% изменился с 53,5 до 53,75 процента, то есть всего на 0,4 процента, а устойчивый показатель соотношения риска/доходности R-cubed изменился с 3,29 до 3,86 процента, то есть всего на 1,73 процента. Устойчивые показатели в меньшей степени отражают существенные изменения, вызванные небольшим количеством сделок. Таким образом, если подгонка кривой позволяет исправить неудачи нескольких сделок, то устойчивые показатели вряд ли покажут улучшения системы, вызванные такой подгонкой.

Перейти на страницу:

Фейс Куртис читать все книги автора по порядку

Фейс Куртис - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


Путь Черепах. Из дилетантов в легендарные трейдеры отзывы

Отзывы читателей о книге Путь Черепах. Из дилетантов в легендарные трейдеры, автор: Фейс Куртис. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*