Необъятный мир: Как животные ощущают скрытую от нас реальность - Эд Йонг
Grant, R. A., Breakell, V., and Prescott, T. J. (2018) Whisker touch sensing guides locomotion in small, quadrupedal mammals, Proceedings of the Royal Society B: Biological Sciences, 285(1880), 20180592.
Grant, R. A., Sperber, A. L., and Prescott, T. J. (2012) The role of orienting in vibrissal touch sensing, Frontiers in Behavioral Neuroscience, 6, 39.
Grasso, F. W. (2014) The octopus with two brains: How are distributed and central representations integrated in the octopus central nervous system? in Darmaillacq, A.-S., Dickel, L., and Mather, J. (eds), Cephalopod cognition, 94–122. Cambridge: Cambridge University Press.
Graziadei, P. P., and Gagne, H. T. (1976) Sensory innervation in the rim of the octopus sucker, Journal of Morphology, 150(3), 639–679.
Greenwood, V. (2012) The humans with super human vision, Discover Magazine. Available at: www.discovermagazine.com/mind/the-humans-with-super-human-vision.
Gregory, J. E., et al. (1989) Responses of electroreceptors in the snout of the echidna, Journal of Physiology, 414, 521–538.
Greif, S., et al. (2017) Acoustic mirrors as sensory traps for bats, Science, 357(6355), 1045–1047.
Griffin, D. R. (1944a) Echolocation by blind men, bats and radar, Science, 100(2609), 589–590.
Griffin, D. R. (1944b) The sensory basis of bird navigation, The Quarterly Review of Biology, 19(1), 15–31.
Griffin, D. R. (1953) Bat sounds under natural conditions, with evidence for echolocation of insect prey, Journal of Experimental Zoology, 123(3), 435–465.
Griffin, D. R. (1974) Listening in the dark: The acoustic orientation of bats and men. New York: Dover Publications.
Griffin, D. R. (2001) Return to the magic well: Echolocation behavior of bats and responses of insect prey, BioScience, 51(7), 555–556.
Griffin, D. R., and Galambos, R. (1941) The sensory basis of obstacle avoidance by flying bats, Journal of Experimental Zoology, 86(3), 481–506.
Griffin, D. R., Webster, F. A., and Michael, C. R. (1960) The echolocation of flying insects by bats, Animal Behaviour, 8(3), 141–154.
Grinnell, A. D. (1966) Mechanisms of overcoming interference in echolocating animals, in Busnel, R.-G. (ed), Animal Sonar Systems: Biology and Bionics, 1, 451–480.
Grinnell, A. D., Gould, E., and Fenton, M. B. (2016) A history of the study of echolocation, in Fenton, M. B., et al. (eds), Bat bioacoustics, 1–24. New York: Springer.
Grinnell, A. D., and Griffin, D. R. (1958) The sensitivity of echolocation in bats, Biological Bulletin, 114(1), 10–22.
Gross, K., Pasinelli, G., and Kunc, H. P. (2010) Behavioral plasticity allows short-term adjustment to a novel environment, The American Naturalist, 176(4), 456–464.
Grüsser, O.-J. (1994) Early concepts on efference copy and reafference, Behavioral and Brain Sciences, 17(2), 262–265.
Gu, J.-J., et al. (2012) Wing stridulation in a Jurassic katydid (Insecta, Orthoptera) produced low-pitched musical calls to attract females, Proceedings of the National Academy of Sciences, 109(10), 3868–3873.
Günther, R. H., O'Connell-Rodwell, C. E., and Klemperer, S. L. (2004) Seismic waves from elephant vocalizations: A possible communication mode? Geophysical Research Letters, 31(11).
Gutnick, T., et al. (2011) Octopus vulgaris uses visual information to determine the location of its arm, Current Biology, 21(6), 460–462.
Hagedorn, M. (2004) Essay: The lure of field research on electric fish, in von der Emde, G., Mogdans, J., and Kapoor, B. G. (eds), The senses of fish: Adaptations for the reception of natural stimuli, 362–368. Dordrecht: Springer.
Hagedorn, M., and Heiligenberg, W. (1985) Court and spark: Electric signals in the courtship and mating of gymnotoid fish, Animal Behaviour, 33(1), 254–265.
Hager, F. A., and Kirchner, W. H. (2013) Vibrational long-distance communication in the termites Macrotermes natalensis and Odontotermes sp., Journal of Experimental Biology, 216(17), 3249–3256.
Hager, F. A., and Krausa, K. (2019) Acacia ants respond to plant-borne vibrations caused by mammalian browsers, Current Biology, 29(5), 717–725.e3.
Halfwerk, W., et al. (2019) Adaptive changes in sexual signalling in response to urbanization, Nature Ecology & Evolution, 3(3), 374–380.
Hamel, J. A., and Cocroft, R. B. (2012) Negative feedback from maternal signals reduces false alarms by collectively signalling offspring, Proceedings of the Royal Society B: Biological Sciences, 279(1743), 3820–3826.
Han, C. S., and Jablonski, P. G. (2010) Male water striders attract predators to intimidate females into copulation, Nature Communications, 1(1), 52.
Hanke, F. D., and Kelber, A. (2020) The eye of the common octopus (Octopus vulgaris), Frontiers in Physiology, 10, 1637.
Hanke, W., et al. (2010) Harbor seal vibrissa morphology suppresses vortex-induced vibrations, Journal of Experimental Biology, 213(15), 2665–2672.
Hanke, W., and Dehnhardt, G. (2015) Vibrissal touch in pinnipeds, Scholarpedia, 10(3), 6828.
Hanke, W., Rцmer, R., and Dehnhardt, G. (2006) Visual fields and eye movements in a harbor seal (Phoca vitulina), Vision Research, 46(17), 2804–2814.
Hardy, A. R., and Hale, M. E. (2020) Sensing the structural characteristics of surfaces: Texture encoding by a bottom-dwelling fish, Journal of Experimental Biology, 223(21), jeb227280.
Harley, H. E., Roitblat, H. L., and Nachtigall, P. E. (1996) Object representation in the bottlenose dolphin (Tursiops truncatus): Integration of visual and echoic information, Journal of Experimental Psychology: Animal Behavior Processes, 22(2), 164–174.
Hart, N. S., et al. (2011) Microspectrophotometric evidence for cone monochromacy in sharks, Naturwissenschaften, 98(3), 193–201.
Hartline, P. H., Kass, L., and Loop, M. S. (1978) Merging of modalities in the optic tectum: Infrared and visual integration in rattlesnakes, Science, 199(4334), 1225–1229.
Hartzell, P. L., et al. (2011) Distribution and phylogeny of glacier ice worms (Mesenchytraeus solifugus and Mesenchytraeus solifugus rainierensis), Canadian Journal of Zoology, 83(9), 1206–1213.
Haspel, G., et al. (2012) By the teeth of their skin, cavefish find their way, Current Biology, 22(16), R629–R630.
Haynes, K. F., et al. (2002) Aggressive chemical mimicry of moth pheromones by a bolas spider: How does this specialist predator attract more than one species of prey? Chemoecology, 12(2), 99–105.
Healy, K., et al. (2013) Metabolic rate and body size are linked with perception of temporal information, Animal Behaviour, 86(4), 685–696.
Heffner, H. E. (1983) Hearing in large and small dogs: Absolute thresholds and size of the tympanic membrane, Behavioral Neuroscience, 97(2), 310–318.
Heffner, H. E., and Heffner, R. S. (2018) The evolution of mammalian hearing, in To the ear and back again – Advances in auditory biophysics: Proceedings of the 13th Mechanics of Hearing Workshop, St. Catharines, Canada, 130001. Available at: aip.scitation.org/doi/abs/10.1063/1.5038516.
Heffner, R. S., and Heffner, H. E. (1985) Hearing range of the domestic cat, Hearing Research, 19(1), 85–88.
Hein, C. M., et al. (2011) Robins have a magnetic compass in both eyes, Nature, 471(7340), E1.
Heinrich, B. (1993) The hot-blooded insects: Strategies and mechanisms of thermoregulation. Berlin: Springer.
Henninger, J., et al. (2018) Statistics of natural communication signals observed in the wild identify important yet neglected stimulus regimes in weakly electric fish, Journal of Neuroscience, 38(24), 5456–5465.
Henry, K. S., et al. (2011) Songbirds tradeoff auditory frequency resolution and temporal resolution, Journal of Comparative Physiology A, 197(4), 351–359.
Henson, O. W. (1965) The activity and function of the middle-ear muscles in echo-locating bats, Journal of Physiology, 180(4), 871–887.
Hepper, P. G. (1988) The discrimination of human odour by the dog, Perception, 17(4), 549–554.
Hepper, P. G., and Wells, D. L. (2005) How many footsteps do dogs need to determine the direction of an odour trail? Chemical Senses, 30(4), 291–298.
Herberstein, M. E., Heiling, A. M., and Cheng, K. (2009) Evidence for UV-based sensory exploitation in Australian but not European crab spiders, Evolutionary Ecology, 23(4), 621–634.
Heyers, D., et al. (2007) A visual pathway links brain structures active during