Аксиомы биологии - Медников Борис Михайлович
Итак, и преформация, и эпигенез оказываются одинаково идеалистическими. Впервые это понял в 1763 году Иммануил Кант, изложивший свои соображения в сочинении под выразительным названием «Единственно возможное основание для доказательства бытия бога». Крупный французский натуралист и историк естествознания Флуранс объяснял в 1861 году возникновение теории преформации стремлением к экономии чудес. Если возникновение живого существа чудо, так уж лучше, чтобы оно произошло один раз, при сотворении мира, чем осуществлялось при каждом акте развития.
Еще в середине нашего века исследователи развития стояли перед небогатым выбором: абсурд теории вложенных друг в друга зародышей-матрешек или же витализм того или иного толка, в конце концов, сводимый к конечной причине Аристотеля. Помощь пришла неожиданно и из той области, откуда ее совсем не ждали.
Генетическая теория развития. Наше время – время «умных» машин. Думаю, каждый хотя бы из восторженных журналистских очерков знает об автоматических станках с программным управлением. Однако машина, выполняющая более или менее сложную работу согласно вложенной в нее программе, отнюдь не такая уж новинка. Уже в начале прошлого века существовали станки для набивки материи и вязки кружев, а также всякого рода музыкальные инструменты – механические органы, шарманки, механические пианино, выдававшие довольно сложные структуры в виде последовательностей узоров, рисунков и звуков разной тональности по программе. Программа в такие устройства вкладывалась в виде металлической или картонной пластинки с пробитыми в ней отверстиями. Так что перфокарта – совсем не достижение века кибернетики.
Со временем перфокарту сменила магнитная лента и считывающая с нее команды головка. Полагаю, и лента заменится в будущем какой– либо голографической пластинкой или же кристаллом, в котором будет записан огромный массив информации. В научно-фантастических романах такие устройства уже есть.
Какое же отношение станки с программным управлением могут иметь к проблеме развития организмов? Оказывается, самое прямое.
Крупный математик Джон фон Нейман, вместе с Норбертом Винером и Клодом Шенноном считающийся создателем новой отрасли знания – кибернетики, как-то задумался: возможно ли построить такую машину, которая, следуя заложенной в ней системе инструкций, построила бы точную копию самой себя? Иными словами, воспроизвести в металле биологическую смену поколений, построить саморазмножающийся автомат.
Согласно математическим выкладкам фон Неймана существует определенный порог сложности машины, ниже которого она не может воспроизводить себе подобных. Естественно, возникает вопрос: как объективно измерять степень сложности системы? Вопрос этот крайне важен, решение его понадобится нам и в будущем, поэтому самое время сейчас на нем остановиться.
Сложность системы измеряется количеством информации, потребной для ее описания. Наиболее распространена двоичная единица информации – бит (от английского binary digit). Столько информации содержится в ответе «да» или «нет» на какой-либо вопрос.
Например, любой ответ на вопрос: «Пойдете ли вы сегодня в кино?» – содержит один бит информации. А если ответов на вопрос больше двух, то есть больше выборов? Если выборы равновероятны, число битов в ответе равно двоичному логарифму (то есть логарифму при основании 2) из числа выборов.
Как этот принцип измерения информации использовать для оценки сложности описания системы? Возьмем классическое описание: «А ростом он мал, грудь широкая, одна рука короче другой, глаза голубые, волосы рыжие, на щеке бородавка, на лбу другая».
Описание очень краткое и годится только для опознавания системы «Гришка Отрепьев», но в принципе его можно сделать сколь угодно более детальным, вплоть до того, чтобы эту систему можно было воссоздать (нужно ли воссоздавать Лжедмитрия – это уже другой вопрос). Забавы ради я подсчитал, что в описании содержится около 12 бит информации.
Иными словами, дьяк сыскного приказа должен был задать 12 вопросов и получить на них 12 ответов «да» или «нет» чтобы это описание составить.
Спешу оговориться, что мои подсчеты отнюдь не так точны, как хотелось бы. Так я исходил из того, что цвета волос (черный, русый, светлый, рыжий, седой и отсутствие волос) равновероятны. Тогда информация была бы равна log26. На деле это далеко не так. Мы не знаем, с какой частотой встречались рыжие на Руси в эпоху Бориса Годунова. У черноволосых китайцев рыжие волосы настолько редки, что Сунь Цюаня, одного из героев эпохи Троецарствия, иначе и не называли, как «голубоглазый и рыжебородый отрок». И сразу было ясно, о ком идет речь. А в Шотландии этот признак довольно неинформативен: нигде я не видел столько рыжих, как на улицах Эдинбурга.
Так что, строго говоря, надо для оценки количества информации пользоваться формулой
H = – ∑Pi log2 Piто есть количество информации равно сумме произведений вероятности встречаемости элемента на двоичный логарифм этой вероятности. Так, если вероятность встречаемости рыжего цвета волос 0,1 – (каждый десятый рыжий), то ответ на вопрос о цвете волос дает 0,3322 бита информации. А будь рыжими все (вероятность Р = 1), H была бы равна нулю (логарифм единицы равен нулю).
Вот так в битах информации фон Нейман оценил сложность системы, способной воспроизводить самое себя. Она оказалась довольно большой – порядка миллиона бит, то есть система должна была бы состоять не менее чем из десяти тысяч элементов. Это очень сложная система, современные станки с программой на магнитной ленте много проще.
Но, допустим, мы создали такую машину, ввели в нее ленту с программой для постройки дочерней» машины и запустили ее. Воспроизвели бы мы в металле смену поколений?
Оказывается, нет. «Дочерняя» машина будет бесплодной: ведь в ней нет ленты с программой. Чтобы появилось третье машинное поколение, в машине-родоначальнице нужно предусмотреть лентокопирующее устройство, передающее по наследству копию программы. Итак, согласно Нейману, по наследству передается не структура, а описание структуры и инструкция по ее изготовлению. И весь процесс развития состоит из двух раздельных операций – копирование этой программы (того, что генетики называют генотипом) и постройка собственно организма (того, что они называют фенотипом).
Вот мы и подошли к формулировке первой аксиомы биологии.
Все живые организмы должны быть единством фенотипа и программы для его построения (генотипа), передающегося по наследству из поколения в поколение.
Ничто не ново под луной. Еще в конце прошлого века биолог Август Вейсман сформулировал этот принцип (деление организма на сому и наследственную плазму).
Все последующие успехи генетики и теории информации лишь блестяще подтвердили его.
Многие читатели, возможно, пожмут, плечами: какая разница передается ли по наследству сама структура в виде маленького организма, запрятанного в яйцеклетке или спермии или же программа кодирующая его построение? Что дает новая теория развития (назовем ее генетической) по сравнению с преформизмом?
Что дает? Да все: мы сразу избавляемся от подавляющей картины бесконечной вереницы вложенных друг в друга зародышей. И не нужно отождествлять генетическую теорию развития с преформизмом, как это иногда делают (появился даже термин «неопреформизм»). Делая это, мы отождествляем программу построения структуры с самой структурой. Но это столь же нелепо, как отождествлять страницу из поваренной книги с обедом, рецепт – с лекарством и чертеж автомобиля – с самим автомобилем.
Как и в теории эпигенеза, упорядоченность организма в каждом новом поколении возникает заново.
Но упорядочивающий фактор – не мистическая энтелехия Аристотеля или «существенная сила» Вольфа. Это вполне реальная программа, закодированная, как мы теперь знаем, в длинных нитевидных молекулах дезоксирибонуклеиновой кислоты – ДНК или рибонуклеиновой кислоты – РНК у некоторых вирусов.