Ник Лэйн - Энергия, секс, самоубийство
Еще один трудный вопрос, на который был найден ответ, касался неандертальцев. Судя по образцам, взятым из мумифицированного тела неандертальца, найденного в 1856 г. в окрестностях Дюссельдорфа, митохондриальная ДНК неандертальцев отличалась от митохондриальной ДНК современных людей. Никаких следов общности с неандертальцами у Homo sapiens не обнаружено. Это говорит о том, что неандертальцы были отдельным подвидом и никогда не скрещивались с людьми. Последний общий предок неандертальцев и людей, возможно, жил около 500–600 тысяч лет назад.
Это лишь два из многочисленных экскурсов в человеческую предысторию, открывшихся нам благодаря анализу митохондриальный ДНК. Однако нет добра без худа. Упрощенческий подход привел к тому, что теория превратилась в доктрину. Ее положения свелись к коротким фразам и повторяются, как мантра, без понимания смысла и без упоминания допущений, на которых некогда основывалась теория. Теперь мы слышим, что митохондриальная ДНК наследуется исключительно по материнской линии. Рекомбинации нет. Отбор на митохондриальную ДНК не действует, так как она кодирует лишь несколько неважных генов. Частота ее мутаций примерно постоянна. Митохондриальные гены отражают истинную филогению людей и народов.
Эта мантра беспокоила некоторых исследователей с самого начала, но лишь недавно эта тревога приобрела четкие очертания. В частности, появились указания на то, что возможна рекомбинация материнской и отцовской митохондриальной ДНК, что «ход» митохондриальных «часов» не всегда равномерен, а также на то, что некоторые митохондриальные гены (включая считавшийся «нейтральным» контрольный участок) могут находиться под сильным давлением отбора. Эти исключения заставляют усомниться в справедливости некоторых сделанных ранее выводов, однако существенно проясняют наши представления о митохондриальном наследовании и помогают нам понять истинное различие между полами.
Митохондриальная рекомбинация
Если митохондрии передаются только по материнской линии, то особых возможностей рекомбинации не просматривается. Половая рекомбинация предполагает случайный обмен ДНК между двумя эквивалентными хромосомами с образованием двух новых хромосом, каждая из которых содержит смесь генов. Ясно, что для того, чтобы рекомбинация была возможна или, по крайней мере, осмысленна, нужна ДНК из двух разных источников, то есть от двух родителей. Обмен генами между двумя идентичными хромосомами не имеет большого смысла, если только одна из двух хромосом не повреждена (это условие должно настораживать, но подробнее об этом позже). Однако в общем при половом размножении происходит рекомбинация и перегруппировка ядерных генов, то есть материнские и отцовские гены смешиваются, а рекомбинации митохондриальной ДНК не происходит, так как все митохондриальные гены происходят от матери. Таким образом, согласно ортодоксальной точке зрения, отцовская и материнская митохондриальные ДНК не смешиваются.
Тем не менее уже довольно давно было известно, что слияние митохондрий и рекомбинация митохондриальной ДНК есть у некоторых примитивных эукариот, например дрожжей. Конечно, как скажет вам любой антрополог, дрожжи — не то же самое, что человек, и такое поведение дрожжей не считалось аргументом против ортодоксальной теории. Потом митохондриальная рекомбинация была найдена и у некоторых других животных, например мидий, но и тут можно было сказать, что эти странности не имеют никакого отношения к эволюции человека. Поэтому все очень удивились, когда Баскар Тиагараян и его коллеги в Университете Миннесоты в 1996 г. продемонстрировали рекомбинацию митохондриальной ДНК у крыс. От этих данных уже нельзя было отмахнуться — как-никак братья-млекопитающие. Но худшее ждало впереди. В 2001 г. было показано, что рекомбинация митохондриальной ДНК происходит в сердечной мышце человека.
Впрочем, даже эти исследования не слишком сильно потрясли основы. Как правило, одна митохондрия содержит 5–10 копий хромосомы в качестве страховки от ущерба, связанного со свободными радикалами. Маловероятно, что один и тот же ген будет поврежден на всех хромосомах, и процесс производства белков можно будет продолжать как обычно. Однако многочисленные копии не позволяют эффективно бороться с ущербом, так как изношенные хромосомы производят смесь нормальных и ненормальных белков. Лучше починить поломку, как это делают все нормальные бактерии, а именно провести рекомбинацию с неповрежденными участками хромосом и получить хорошие рабочие копии. Такая рекомбинация между эквивалентными хромосомами в одной и той же митохондрии называется «гомологичной» рекомбинацией. Она не подрывает сам принцип материнского наследования, а просто служит способом устранения повреждений в пределах одной особи. Так что митохондрии могут сливаться и прибегать к гомологичной рекомбинации сколько им угодно. Все равно вся митохондриальная ДНК наследуется только от матери.
Тем не менее если в яйцеклетке окажутся отцовские митохондрии, то рекомбинация отцовской и материнской митохондриальной ДНК в принципе возможна. Отцовские митохондрии могут проникать в яйцеклетки человека, поэтому нельзя исключать, что некоторые из них ухитрятся выжить там. Бывает ли так? Прямых свидетельств не было, поэтому разные исследовательские группы стали искать косвенные свидетельства митохондриальной рекомбинации — и нашли их. Первой ласточкой были данные Адама Эйра-Уокера, Ноэля Смита и Джона Мейнарда Смита (Университет Суссекса), опубликованные в 1999 г. Они были, по сути, статистическими. Эти ученые утверждали, что если митохондриальная ДНК действительно воспроизводится за счет клонального размножения митохондрий, то ее последовательности должны продолжать расходиться в разных популяциях по мере того, как они приобретают новые мутации. На самом деле так происходит не всегда. Иногда всплывает «атавистическая» последовательность, до странности похожая на предковый тип. Это может произойти только по двум причинам: в результате случайных «возвратных» мутаций, что по определению крайне маловероятно, или за счет рекомбинации с кем-то, кто сохранил исходную последовательность. Такие неожиданные реинкарнации последовательностей называются гомоплазиями. Эйр-Уокер и его коллеги нашли немало гомоплазий. Списать их на игру случая было нельзя, и они решили, что нашли свидетельство рекомбинации.
Эта статья вызывала всеобщее возмущение. Влиятельные ученые выискали в ней ошибки, допущенные при отборе образцов ДНК (со статистикой, правда, было все в порядке). Когда ошибки исключили, свидетельства рекомбинации испарились. «Нет никаких причин для паники», — резюмировали Винсент Маколи и его коллеги в Оксфорде, и все исследователи, работающие в этой области, вздохнули с облечением: доктрина верна, можно спать спокойно. Правда, Эйр-Уокер и его соратники стояли на своем. Они признали, что допустили ряд ошибок, но утверждали, что после их исключения данные все равно свидетельствуют о рекомбинации, а это «может быть, и не является в глазах некоторых причиной для паники, но совершенно напрасно, потому что есть очень реальная возможность того, что допущение, которое мы столько времени считали справедливым, неверно».
В том же 1999 г. (и более того, в том же номере «Записок Королевского общества») Эрика Хагельберг, бывшая студентка оксфордской группы, и ее коллеги высказали свое предположение в пользу рекомбинации митохондриальных генов. Они нашли у нескольких неродственных групп, населяющих тихоокеанский остров Нгуна (архипелаг Вануату), одну и ту же редкую мутацию. Было четко видно, что митохондриальная ДНК представителей этих групп унаследована из разных источников, и тем не менее одна и та же мутация встречалась многократно. Значит, она либо возникала несколько раз независимо (что невероятно), либо возникла один раз, а потом была передана в другие популяции (что возможно только за счет рекомбинации). Однако и тут доктрина устояла. Загадочная мутация оказалась связана с неправильной настройкой секвенатора, который почему-то выдавал результат со смещением на 10 пар оснований. После внесения поправок она исчезла. Авторам статьи пришлось опубликовать опровержение, и сама Хагельберг теперь называет эту досадную историю своей «печально известной ошибкой».
К 2001 г. рекомбинация митохондриальной ДНК выглядела, мягко говоря, сомнительно. Два крупных исследования были опровергнуты, и хотя авторы обеих статей настаивали на том, что часть их данных все же подает повод к сомнениям, всем было понятно, с чем связаны такие заявления: надо же как-то спасать подмоченную репутацию. Казалось, отсутствие рекомбинации митохондриальной ДНК можно считать доказанным.
Однако вскоре появились свежие сомнения. В 2002 г. Марианна Шварц и Джон Виссинг (Университетская больница Копенгагена) сообщили, что один из их пациентов, двадцативосьмилетний молодой человек с митохондриальным нарушением, унаследовал часть митохондриальной ДНК от отца и имел смесь материнской и отцовской ДНК — ту самую гетероплазмию, которой так страшились приверженцы ортодоксальной доктрины. Гетероплазмия носила мозаичный характер: митохондрии в мышечных клетках имели 90 % отцовской и лишь 10 % материнской ДНК, а клетки крови содержали почти 100 % материнской ДНК. Впервые было однозначно показано наследование отцовской митохондриальной ДНК у людей. Стало ясно, что отцовская ДНК действительно может «просачиваться» в яйцеклетку, в данном случае ее заметили только потому, что она вызвала болезнь. Вопрос встал ребром: если в одном человеке уживаются две митохондриальные популяции (от отца и от матери), возможна ли рекомбинация между ними?