Евгений Кунин - Логика случая. О природе и происхождении биологической эволюции
Говоря о случайности, энтропия (шум) на всех уровнях биологической передачи информации может быть конструктивным фактором эволюции, в значительной степени из-за устойчивости биологических сетей. В какой степени такая устойчивость является эволюционно возникшим, адаптивным качеством, а не фундаментальным свойством сетей, это глубокий, интересный вопрос, который еще предстоит тщательно расследовать. Важно отметить, что, хотя никто до сих пор не открыл прямого пути от фенотипических мутаций в геном, фенотипический шум также оказывается потенциально важным фактором эволюции благодаря опережающему эффекту, а также специальным механизмам усиления эволюционируемости, которые действуют посредством фенотипических мутаций, как, возможно, происходит в случае прионов грибов[98].
Рис. 9–5. Структура эволюционного процесса: многофакторное представление.
В другом плане многочисленные явления эпигенетической наследственности, как те, что связаны с РНК-интерференцией (см. выше), так и лучше изученные, основанные на наследуемых закономерностях метилирования ДНК, являются важными механизмами эволюции (Johnson and Tricker, 2010; Richards, 2006). Отчасти эпигенетические явления (которые мы не имеем возможности обсуждать здесь подробно) играют ту же роль, что и опережающий эффект фенотипических мутаций: они образуют буфер пластичности, что дает популяции шанс пересечь глубокие долины в неровном адаптивном ландшафте.
Что касается «необходимости», тщательное изучение различных, повсеместно идущих процессов, которые способствуют возникновению геномных вариаций, показывает, что эволюция не полагается всецело на стохастические мутации. Напротив, изменчивость часто управляется сложными молекулярными механизмами, которые инициируют адаптивную реакцию на вызовы окружающей среды разной степени специфичности. Геномная эволюция, как выясняется, охватывает весь спектр сценариев, от чисто дарвиновского, основанного на случайных изменениях, до истинно ламарковского, в котором конкретный механизм ответа на стимул фиксируется в эволюционирующей популяции через специфическое изменение в геноме. В широком смысле все эти пути изменения генома отражают взаимодействие между эволюционирующей популяцией и окружающей средой, где активная роль принадлежит либо только отбору (чисто дарвиновский сценарий), либо направленной изменчивости, которая сама может стать объектом отбора (ламарковский сценарий).
Механизмы эволюции сами являются объектом отбора и эволюционируют: способность эволюционировать тоже эволюционирует. Многие биологи-эволюционисты отнеслись бы с беспокойством к такому заявлению, поскольку оно может трактоваться как принятие идеи «эволюционного предвидения». Тем не менее, невзирая на эти опасения, обширные исследования стресс-индуцированного мутагенеза и появляющееся осознание потенциально ключевой роли специализированных приспособлений, АПГ, в процессе горизонтального переноса генов не оставляют сомнений в том, что эволюционный потенциал организмов сам является предметом отбора и эволюционирует. Эволюция эволюционируемости непосредственно наблюдается в лабораторных экспериментах с эволюционирующими бактериальными популяциями. Повторю еще раз: эволюция имеет возможность экстраполировать, отталкиваясь от повторяющихся событий прошлого, и эффективно прогнозировать общие черты будущего.
В завершение этой главы стоит подчеркнуть, что новые пути эволюции, обсуждаемые здесь, не требуют никаких неизвестных фундаментальных механизмов. Таким образом, ни один из этих ранее недооцененных или прямо отрицаемых эволюционных феноменов не идет вразрез с основными принципами молекулярной биологии, в частности центральной догмой Крика, которая провозглашает необратимость передачи информации от нуклеиновой кислоты к белку. Например, CRISPR-система, которая, как представляется на первый взгляд, воплощает ламарковский сценарий эволюции и тем самым нарушает основные табу, действует через комбинацию молекулярных механизмов, которые в принципе универсальны и хорошо известны, даже если детали могут быть уникальными для данной системы. Эти механизмы включают в себя различные дополнительные взаимодействия между нуклеиновыми кислотами, интеграцию фрагментов ДНК в специфические локусы генома, а также узнавание и расщепление различных структур РНК ферментными комплексами – уникальные приспособления, которые эволюционный процесс «насобирал» из обычных компонентов.
Рекомендуемая дополнительная литература
Draghi J. A., T. L. Parsons, G. P. Wagner, and J. B. Plotkin. (2010) Mutational Robustness Can Facilitate Adaptation. Nature 463 (7,279): 353–355.
Эта работа показывает, «используя общую модель популяционной генетики, что мутационная устойчивость может препятствовать либо способствовать адаптации в зависимости от размера популяции, частоты мутаций и структуры ландшафта приспособленности. В частности, нейтральное разнообразие в устойчивой популяции может ускорять адаптацию, пока число фенотипов, доступных индивиду посредством мутации, меньше, чем общее число фенотипов в адаптивном ландшафте».
Galhardo R. S., P. J. Hastings, and S. M. Rosenberg. (2007) Mutation As a Stress Response and the Regulation of Evolvability. Critical Reviews in Biochemistry and Molecular Biology 42: 399–435.
Стресс-индуцированный мутагенез интерпретируется как система регуляции способности к эволюционированию, которая облегчает адаптацию и выживание.
Koonin E. V., and Y. I. Wolf. (2009) Is Evolution Darwinian or/and Lamarckian? Biology Direct 4: 42.
Обсуждение эволюционных явлений, в которых, по-видимому, действуют ламарковские или квазиламарковские механизмы.
Levy S. F., and M. L. Siegal. (2008) Network Hubs Buffer Environmental Variation in Saccharomyces Cerevisiae. PLoS Biology 6: e264.
Новаторское экспериментальное исследование капацитации, показывающее, что многочисленные центральные узлы (hubs) молекулярных сетей обладают свойствами эволюционных конденсаторов.
Lynch M. (2010) Evolution of the Mutation Rate. Trends in Genetics 26: 345–352.
Обзор экспериментально определенных частот мутаций в полном спектре организмов, выявивший парадоксальную зависимость между частотой мутаций и размером генома у эукариот.
Marraffini L. A., and E. J. Sontheimer. (2010) CRISPR Interference: RNA-Directed Adaptive Immunity in Bacteria and Archaea. Nature Reviews Genetics 11: 181–190.
Обзор молекулярных механизмов системы CRISPR-Cas.
Masel J., and M. V. Trotter. (2010) Robustness and Evolvability. Trends in Genetics 26: 406–414.
Название «Устойчивость и способность к эволюционированию» говорит само за себя.
Rajon, E., and J. Masel. (2011) Evolution of Molecular Error Rates and the Consequences for Evolvability. Proceedings of the National Academy of Sciences USA 108: 1,082—1,087.
Важное исследование, в котором проводится различие между локальными адаптациями, направленными на уменьшение эффекта геномных и фенотипических мутаций (эволюция в сторону увеличения устойчивости), и глобальными адаптациями (эволюция в сторону снижения частоты мутаций). Моделирование в рамках популяционной генетики показывает, что локальные адаптации реалистичны только в больших популяциях с интенсивным отбором, в то время как небольшие популяции развивают глобальные адаптации.
Wagner A. (2008) Neutralism and Selectionism: A Network-Based Reconciliation. Nature Reviews Genetics 9: 965–974.
Важная работа, описывающая эволюцию (почти) нейтральных сетей, которые содержат резервуар потенциально адаптивных модификаций.
Whitehead D. J., C. O. Wilke D. Vernazobres, and E. BornbergBauer. (2008) The Look-ahead Effect of Phenotypic Mutations. Biology Direct 3: 18.
Концептуально важное модельное исследование, демонстрирующее потенциальную эволюционную значимость фенотипических мутаций.
Глава 10. Мир вирусов и его эволюция
Вирусы были открыты как нечто совсем непримечательное, а именно необычная разновидность инфекционных агентов, а возможно, и особый род токсинов, вызывающих болезни растений, например табачную мозаику. Так как эти агенты проходили сквозь тонкие фильтры, задерживающие бактерии, было сделано верное предположение, что они отличаются от (типичных) бактерий. Вскоре после этого были открыты первые вирусы, поражающие животных. В их числе – вирус саркомы Рауса, первый известный вирус с канцерогенными свойствами, были открыты и удивительные патогены, которые, казалось, пожирали бактерии – их назвали бактериофагами, а в итоге они оказались бактериальными вирусами. В дальнейшем, в течение ХХ столетия, вирусологию ожидало блистательное развитие (Fields et al., 2001) – по двум причинам. Во-первых, вирусы важны для медицины и сельского хозяйства. Во-вторых, вирусы – простейшие генетические системы и потому стали излюбленными моделями, сначала для ранней молекулярной генетики (прежде всего благодаря работам знаменитой «фаговой группы» под руководством Макса Дельбрюка (Cairns, 1966), а затем для геномики. Однако к 1970-м годам генетика, а к концу 1990-х и геномика достаточно окрепли, чтобы продуктивно работать и с клеточными моделями[99]. В результате вирусология потеряла ведущую роль в фундаментальной биологии (появляясь, впрочем, в эпизодах).