Сверкающая бездна. Какие тайны скрывает океан и что угрожает его глубоководным обитателям - Хелен Скейлс
Международная неправительственная организация «Амнэсти интернешнл» сообщает о широком использовании детского труда в нелегальных карьерах Конго, где работают в том числе дети младше семи лет. Они таскают огромные мешки с камнями и вдыхают вредную кобальтовую пыль. Один мальчик рассказал, что, когда ему было двенадцать лет, он оставался в карьере по 24 часа кряду. Чудовищное положение дел с правами человека в этих карьерах служит одним из стимулов для добычи кобальта на морском дне. Другой стимул – нестабильная цена этого металла на мировых рынках.
В середине 2000-х годов в связи с ростом спроса со стороны высокотехнологичных отраслей на производство аккумуляторных батареек для смартфонов и ноутбуков цены на кобальт взлетели, но после глобальной рецессии 2008 года снова упали. Затем в 2017 и 2018 годах десятки стран и городов по всему миру обязались постепенно отказаться от использования автомобилей, работающих на ископаемом топливе, что привело к лихорадочному росту интереса к электромобилям и совпало со скачком цен на кобальт, которые за два года выросли более чем втрое – с 30 000 до 95 000 долларов США за тонну. Отчасти скачок цен был вызван тем, что Китай, владеющий восемью из четырнадцати крупнейших кобальтовых рудников в Конго и перерабатывающий 80 % мировых поставок кобальта, накапливал запасы в ожидании растущего спроса со стороны производителей автомобилей. Это стало идеальным моментом для компаний, планирующих глубоководные разработки, чтобы донести свою идею о проблематичности поставок кобальта и о приоритете и потенциальной прибыльности его добычи со дна моря. Однако к 2019 году растущего спроса на кобальт не случилось, и автомобильные компании так и не поставили производство электромобилей на поток. Китай сократил свои поставки, и к началу 2020 года цена на кобальт упала.
Аккумуляторные батарейки были разработаны в 1970-е годы, и с тех пор их конструкция не претерпела значительных изменений. Литий-ионные аккумуляторы впервые были использованы в портативных видеокамерах корпорацией «Сони» в 1991 году, и теперь на базе этой технологии зиждится наша цифровая эпоха. Это тот самый «черный ящик», с которым большинство из нас имеет дело для подзарядки своего смартфона. Стоит включить телефон – и электроны потекут по цепи между двумя электродами, от отрицательного анода к положительному катоду, выгружая заряд тока. Одновременно поток положительно заряженных ионов потечет между электродами через жидкий электролит. Подключите телефон к розетке – и электричество, поступающее в аккумулятор, повернет этот процесс вспять: теперь ионы перемещаются обратно к аноду и накапливают заряд.
Ранние версии элементов питания имели литиевый анод и катод из дисульфида титана, который обладает неприятной особенностью – может взрываться. При замене дисульфида титана на оксид кобальта увеличилась емкость заряда аккумулятора и уменьшилась его подверженность возгоранию. Эти батарейки достаточно хорошо работают в портативной электронике, но сейчас идет гонка в деле создания аккумулятора для электромобилей следующего поколения, который был бы не слишком большим и тяжелым, а главное – достаточно емким, чтобы не разряжаться до следующей зарядной станции. Нестабильные цены и растущее возмущение по поводу способа добычи кобальта в Конго предполагает сокращение его использования или даже полный отказ от этого металла. Компания «Панасоник», поставляющая аккумуляторные батареи производителю электромобилей «Тесла», уже усовершенствовала литий-ионные элементы, снизив в них содержание кобальта больше чем наполовину по сравнению с другими автомобильными аккумуляторами.
Кобальтовый катод можно полностью заменить на что-то другое, хотя существующие альтернативы пока не всегда работают так же хорошо. В Китае батареи большинства электробусов имеют железные катоды, однако они держат меньше заряда и не подходят для частных автомобилей, которым может потребоваться проехать большее расстояние на одном заряде.
Большой интерес вызывают перспективные альтернативы кобальтовым конструкциям, в том числе твердотельные батареи, в разработку которых инвестируют такие автомобильные компании, как «Тойота», «Мицубиси», «БМВ» и «Мерседес-Бенц». Они стремятся заменить жидкий электролит каким-нибудь негорючим твердым материалом, который работает с электродами, не содержащими кобальта. Беспрерывно ведутся поиски новых решений для автомобилей с нулевым уровнем выбросов, включая водородные топливные элементы и суперконденсаторы, которые накапливают энергию в виде статического заряда. И то и другое не потребует значительного количества кобальта.
Утверждать, что глубоководный кобальт незаменим для электромобилей, неодим – для ветряных турбин или теллур – для солнечных батарей, значит игнорировать тот факт, что в технологиях могут и должны внедряться инновации. В связи с этим приходят на ум астрономы, создающие новейшие космические зонды и отправляющие их исследовать пространство на окраинах Солнечной системы и за ее пределами, прекрасно понимая, что технологические приспособления на борту – камеры и датчики – скоро устареют, а обновление оборудования на этих космических зондах невозможно[100]. Здесь, на Земле, производство набирает обороты во многом благодаря мощному промышленному лобби, защищающему свой способ ведения дел и сохранения прибыли. Но предприятия не находятся на космическом зонде, уносящемся все дальше и дальше за пределы галактики. Промышленная индустрия должна создавать возможности для инноваций и быстро адаптироваться к потребностям людей и имеющимся ресурсам, не подвергая риску человечество и весь остальной мир живой природы.
* * *
Технический прогресс не решит всех проблем человечества и не оздоровит наши отношения с живой планетой. Однако новые технологии могли бы помочь экономике избавиться от ископаемого топлива и найти иной способ использования ресурсов Земли.
Запасы металлов, необходимых для электромобилей, солнечных батарей и ветряных турбин, ограничены, как и ископаемое топливо, которому они придут на смену. Но, в отличие от одноразового ископаемого топлива, металлы можно перерабатывать и использовать повторно. Они представляют собой ценный ресурс, который нельзя тратить впустую, вновь и вновь наступая на старые грабли.
В ходе различных исследований предпринимались попытки решить сложную и нечетко поставленную задачу прогнозирования спроса на металлы. Был сделан вывод, что в ближайшие десятилетия некоторые элементы могут стать дефицитными, дорогими и труднодоступными на суше. Прогнозы варьируются в зависимости от целого ряда предположений, и в них содержатся указания на разные так называемые «критические металлы». Однако большинство специалистов сходятся в одном: металлы необходимо перерабатывать и использовать повторно.
Если производители будут повторно использовать одни и те же ключевые металлы, исчезнет необходимость истощать запасы на суше и не будет