Карл Циммер - Эволюция: Триумф идеи
В «Происхождении видов» Дарвин привел один пример того, как коэволюция может сформировать два вида. Луговой клевер в обычных условиях опыляют шмели. Но представьте, что однажды — совершенно неожиданно — все шмели исчезнут. Если луговой клевер не сможет обзавестись новым партнером-опылителем, он не сможет размножаться и тоже исчезнет.
В принципе, вакантное место могут заполнить медоносные пчелы. В обычных условиях они опыляют другую форму клевера, известную как клевер пунцовый. Но некоторые пчелы, возможно, начнут пользоваться запасами сладкого нектара, который останется невостребованным после исчезновения шмелей. Поначалу пчелам придется нелегко, ведь у них не такие длинные язычки, как у шмелей, и нектара им будет доставаться куда меньше, чем шмелям. Но пчела, которой повезет родиться с необычно длинным язычком, получит щедрое вознаграждение и никогда не будет испытывать недостатка в нектаре лугового клевера, так что естественный отбор, возможно, позаботится о том, чтобы со временем язычки у медоносных пчел удлинились.
Тем временем и луговой клевер, возможно, адаптируется к своему новому опылителю, медоносной пчеле. Пыльца растения, цветок которого окажется чуть более доступным для пчелы, распространится дальше, чем пыльца других растений. Постепенно цветки лугового клевера и медоносные пчелы приспособятся друг к другу.
«Таким образом я могу понять, — писал Дарвин, — как цветок и пчела могли бы медленно, одновременно или по очереди, изменяться и приспосабливаться друг к другу самым идеальным образом, путем регулярного сохранения особей, представляющих взаимные и в чем-то благоприятные отклонения в строении».
Вскоре после окончания работы над «Происхождением видов» Дарвин открыл для себя, насколько сильно цветы и насекомые могут влиять друг на друга. Он начал изучать орхидеи — как местные в полях вокруг Даун-Хауса, так и экзотические виды, которые ему присылали из тропиков и которые он выращивал в оранжерее. Во времена Дарвина большинство людей считало, что орхидеи созданы исключительно для услаждения человеческого взора. Но Дарвин понял, что форма их необыкновенных цветов — не красота ради красоты, а сложное устройство для вовлечения насекомых в сексуальную жизнь растений.
Подобно механику, разбирающему машину, чтобы разобраться в ее устройстве, Дарвин пытался понять, как устроена орхидея и как части цветка взаимодействуют между собой. Среди видов, которые произвели на него особенно сильное впечатление, была южноамериканская орхидея Catasetum saccatum. Это растение держит свою пыльцу на специальном диске, прикрепленном к гибкому побегу; изначально побег загнут назад таким образом, что диск находится внутри цветка. Там он и остается, а побег напрягается так, что вся конструкция напоминает взведенный арбалет. Когда на орхидею, чтобы напиться нектара, прилетает насекомое, ему приходится садиться на особый чашевидный лепесток, горизонтально торчащий из цветка наружу. При этом чтобы добраться до нектара, нужно проползти по лепестку, задевая спиной за особую нависающую сверху «антенну». Антенна прикрепляется к гибкому побегу, и вся система вместе работает как спусковой крючок. Побег «выстреливает» и хлопает диском с пыльцой по спинке пчелы.
Дарвин установил, что пыльцу цветка практически невозможно высвободить как-то иначе. Образцы С. saccatum, которые он изучал, были доставлены поездом, но даже тряска в вагоне не заставила пыльники взорваться и выпустить пыльцу. Дарвин тыкал иглой в разные части цветка — и ничего не происходило. «После испытаний, проведенных на пятнадцати цветках трех разных видов, — писал он позже, — я обнаружил, что никакое умеренное воздействие на любую часть цветка, за исключением антенны, не дает никакого результата». Стало понятно, что орхидеи эволюционировали вместе с насекомыми-опылителями.
Дарвин описал эти и многие другие орхидеи в книге с длинным названием «О различных приспособлениях, посредством которых британские и заморские орхидеи опыляются насекомыми, и о положительных эффектах скрещивания». Как и в «Происхождении видов», Дарвин развивал теорию эволюции, но делал это более искусно, чем в предыдущей книге. Автор вел читателя от одной орхидеи к другой, показывая сложное устройство каждого цветка и его уникальные приспособления к половой жизни. Если прежде он показал, что морские уточки — это высокоразвитые ракообразные, то теперь наглядно продемонстрировал, что орхидеи — высокоразвитые цветковые растения. Эволюция растянула, перекрутила и трансформировала части обычных цветов, чтобы превратить их в катапульты и другие устройства, при помощи которых орхидеи распространяют свою пыльцу.
Дарвин был абсолютно убежден, что причудливая форма цветков орхидей сформировалась именно в процессе коэволюции; он даже высказал в книге смелое предсказание. Как раз в то время исследователи нашли на Мадагаскаре орхидею Angraecum sesquipedale с ее 40-сантиметровым нектарником. Дарвин высказал уверенность в том, что на острове найдется и насекомое с соответствующим по размеру длинным язычком, как бы странно это ни звучало. Пыльца орхидеи, написал он, «не будет извлечена, пока какой-нибудь огромный мотылек с необычайно длинным хоботком не попытается выпить последнюю каплю нектара».
Время шло, а чудесного мотылька все не было. Но Дарвин, несмотря ни на что, продолжал надеяться. И только в 1903 г. энтомологи сообщили о существовании именно такого насекомого. Находка получила название Xanthopan morgani praedicta (praedicta означает «предсказанный») в честь Дарвинова предсказания. Сегодня биологам известно немало и других видов мотыльков и мух с длинными язычками, при помощи которых они пьют нектар других цветков с такими же длинными нектарниками. Такие пары можно найти не только на Мадагаскаре, но также в Бразилии и Южной Африке. Но можно с уверенностью сказать: счастлив ученый, у которого хотя бы однажды сбылось самое странное, самое необычное предсказание.
Матрица коэволюцииКоэволюция — гораздо более мощное и распространенное явление, чем мог предположить Дарвин. Даже среди растений, подсказавших ему саму концепцию коэволюции, оно встречается значительно чаще, чем представлялось ранее. В настоящий момент ученые признают, что громадному большинству цветковых растений — 290 000 видов — для распространения пыльцы необходимы животные (лишь у 20 000 видов пыльца может разноситься ветром или водой). Вместо нектара некоторые растения предлагают насекомым в качестве «вознаграждения» смолу или масло, которые те используют при строительстве гнезд. Томаты и некоторые другие растения даже делятся с насекомыми пыльцой. Как правило, они держат пыльцу в особых контейнерах, напоминающих солонки с отверстиями; насекомое, опустившись на цветок, начинает махать крылышками с частотой, которая заставляет контейнер резонировать и вытрясает из него пыльцу. Пыльца при этом не только становится главным блюдом на пиру насекомого, но и обсыпает его с ног до головы.
Конечно, опылением цветков занимаются в основном насекомые, но некоторые позвоночные — около 1200 видов, главным образом птицы и летучие мыши, — тоже не брезгуют этим занятием. Подобно опылителям-насекомым, они определяют ход эволюции тех растений, которые опыляют. Цветки, опыляемые птицами, привлекают их ярко-красными лепестками (насекомые не различают цвета). В отличие от ароматных орхидей, цветы, опыляемые птицами, не имеют запаха — ведь у птиц очень слабое обоняние. Они держат свой нектар в длинных широких трубках, в которые удобно залезать длинным жестким птичьим клювом. С другой стороны, растения, опыляемые летучими мышами, раскрывают свои цветы по ночам, когда мыши покидают свои насесты в поисках пищи. Чтобы облегчить рукокрылым поиск, некоторые цветки приобрели в процессе эволюции чашеобразную форму, удобную для отражения и фокусировки звуковых волн, которыми летучие мыши пользуются при эхолокации. Эти акустические зеркала привлекают внимание ночных летунов и, подобно маяку, ведут их к источнику пищи.
Культурные растения нуждаются в опылителях нисколько не меньше, чем их дикие предки и родичи. Без опылителей яблоневый сад остался бы бесплодным, а на кукурузном поле невозможно было бы отыскать ни одного початка. Но растения — как дикие, так и культурные, — зависят в своем существовании и от других эволюционных партнеров. Растения производят органические углеводороды из углекислого газа и воды в процессе фотосинтеза, а вот извлекать из почвы азот, фосфор и другие питательные вещества им гораздо сложнее. К счастью, корни многих видов растений переплетаются с тончайшей сетью грибных волокон, которые обеспечивают им питание.
Грибы производят ферменты, которые разлагают почву и помогают всасывать из нее фосфор и другие химические вещества. Они доставляют эти питательные вещества в корни растения, а взамен получают некоторое количество органических веществ, созданных растением в процессе фотосинтеза. Грибы дорого берут за свои услуги: они отнимают у дерева около 15% всех органических углеводородов, созданных за год. Но дело того стоит: без грибов многие растения вырастают чахлыми и слабыми. Некоторые виды грибов способны также уничтожать почвенных нематод и прочих вредителей, а также повысить выносливость растения к засухе и другим природным катаклизмам. Они делают запасы извлеченных из растений углеводов, а затем перегоняют их по сети грибницы. Если одно из деревьев, связанных с этой грибницей, будет испытывать дефицит углерода, грибы могут поставлять его через корни. Получается, что леса, прерии и соевые поля — это не набор отдельных особей, а всего лишь видимая часть громадной эволюционной матрицы.