Kniga-Online.club
» » » » Юрий Александров - Основы психофизиологии - Александров Ю.И. (ред.)

Юрий Александров - Основы психофизиологии - Александров Ю.И. (ред.)

Читать бесплатно Юрий Александров - Основы психофизиологии - Александров Ю.И. (ред.). Жанр: Биология издательство -, год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

К перечисленным преимуществам электрических показателей физиологической активности следует добавить и неоспоримые технические удобства их регистрации: помимо специальных электродов, для этого достаточно универсального усилителя биопотенциалов, который скоммутирован с компьютером, имеющим соответствующее программное обеспечение. И, что важно для психофизиологии, большую часть этих показателей можно регистрировать, никак не вмешиваясь в изучаемые процессы и не травмируя объект исследования. К наиболее широко используемым методам относятся регистрация импульсной активности нервных клеток, регистрация электрической активности кожи, электроэнцефалография, электроокулография, электромиография и электрокардиография. В последнее время в психофизиологию внедряется новый метод регистрации электрической активности мозга – магнитоэнцефалография и изотопный метод (позитронноэмиссионная номография).

1. РЕГИСТРАЦИЯ ИМПУЛЬСНОЙ АКТИВНОСТИ НЕРВНЫХ КЛЕТОК

Изучение активности нервных клеток, или нейронов, как целостных морфологических и функциональных единиц нервной системы, безусловно, остаётся базовым направлением в психофизиологии. Одним из показателей активности нейронов являются потенциалы действия – электрические импульсы длительностью несколько мс и амплитудой до нескольких мВ. Современные технические возможности позволяют регистрировать импульсную активность нейронов у животных в свободном поведении и, таким образом, сопоставлять эту активность с различными поведенческими показателями. В редких случаях в условиях нейрохирургических операций исследователям удаётся зарегистрировать импульсную активность нейронов у человека.

Поскольку нейроны имеют небольшие размеры (несколько десятков микрон), то и регистрация их активности осуществляется с помощью подводимых вплотную к ним специальных отводящих микроэлектродов. Своё название они получили потому, что диаметр их регистрирующей поверхности составляет около одного микрона. Микроэлектроды бывают металлическими и стеклянными. Металлический микроэлектрод представляет собой стержень из специальной высокоомной изолированной проволоки со специальным способом заточенным регистрирующим кончиком. Стеклянный микроэлектрод – пирексовая тонкая трубочка (диаметр около 1 мм) с тонким незапаянным кончиком, заполненная раствором электролита. Электрод фиксируется в специальном микроманипуляторе, укреплённом на черепе животного, и коммутируется с усилителем. С помощью микроманипулятора электрод через отверствие в черепе пошагово вводят в мозг. Длина шага составляет несколько микрон, что позволяет подвести регистрирующий кончик электрода очень близко к нейрону, не повреждая его (рис. 2.1 А). Подведение электрода к нейрону осуществляется либо вручную, и в этом случае животное должно находиться в состоянии покоя, либо автоматически на любом этапе поведения животного. Усиленный сигнал поступает на монитор и записывается на магнитную ленту или в память ЭВМ. При «подходе» кончика электрода к активному нейрону экспериментатор видит на мониторе появление импульсов, амплитуда которых при дальнейшем осторожном продвижении электрода постепенно увеличивается. Когда амплитуда импульсов начинает значительно превосходить фоновую активность мозга, электрод больше не подводят, чтобы исключить возможность повреждения мембраны нейрона. Пример импульсной активности нейрона, зарегистрированной у кролика, находящегося в условиях свободного поведения, представлен на рис. 2.1 В.

Рис. 2.1. А – принципиальная схема регистрации импульсной активности нейрона:

1 - нейрон (увеличен) и кончик отводящего электрода;

2 – микроманипулятор (в разрезе);

3 – микроэлектрод с отводящим проводом;

4 – индифферентный электрод;

5 – усилитель;

6 – монитор и записывающее устройство

Б – пример записи импульсной активности нейрона (нейронограмма)

2. ЭЛЕКТРОЭНЦЕФАЛОГРАФИЯ

Среди методов электрофизиологического исследования ЦНС человека наибольшее распространение получила регистрация колебаний электрических потенциалов мозга с поверхности черепа – электроэнцефалограммы. В электроэнцефалограмме отражаются только низкочастотные биоэлектрические процессы длительностью от 10 мс до 10 мин. Предполагается, что электроэнцефалограмма (ЭЭГ) в каждый момент времени отражает суммарную электрическую активность клеток мозга. Но окончательно вопрос о происхождении ЭЭГ не решён.

ЭЭГ регистрируют с помощью наложенных на кожную поверхность головы (скальп) отводящих электродов, скоммутированных в единую цепь со специальной усилительной техникой. Увеличенные по амплитуде сигналы с выхода усилителей можно записать на магнитную ленту или в память компьютера для последующей статистической обработки. Для минимизации контактного сопротивления между электродом и скальпом на месте наложения электрода тщательно раздвигают волосы, кожу обезжиривают раствором спирта и между электродом и кожей кладут специальную электропроводную пасту. Для исключения электрохимических процессов на границе электрод–электролит (паста), приводящих к собственным электрическим потенциалам, поверхность электродов покрывают электропроводными неполяризующимися составами, например хлорированным серебром. В норме контактное сопротивление не должно превышать 3–5 кОм.

Как любые электрические потенциалы, ЭЭГ всегда измеряется между двумя точками. Существуют два способа регистрации ЭЭГ – биполярный и монополярный. При биполярном отведении регистрируется разность потенциалов между двумя активными электродами. Этот метод применяется в клинике для локализации патологического очага в мозге, но он не позволяет определить, какие колебания возникают под каждым из двух электродов и каковы их амплитудные характеристики. В психофизиологии общепринятым считается метод монополярного отведения. При монополярном методе отведения регистрируется разность потенциалов между различными точками на поверхности головы по отношению к какой-то одной индифферентной точке. В качестве индифферентной точки берут такой участок на голове или лице, на котором какие-либо электрические процессы минимальны и их можно принять за нуль: обычно это – мочка уха или сосцевидный отросток черепа. В этом случае с электрода, наложенного на скальп, регистрируются изменения потенциала с определённого участка мозга.

Отводящие электроды можно накладывать на самые разные участки поверхности головы с учётом проекции на них тех или иных областей головного мозга. На заре применения ЭЭГ исследователи так и делали, но при этом они обязательно предоставляли в своих отчётах и публикациях координаты расположения электродов. Однако потребность сопоставления электроэнцефалографических результатов, полученных у людей с разными размерами головы в разных лабораториях и в разных странах, привела к созданию единой стандартной системы наложения электродов, получившей название системы «10–20» [Jasper, 1958].

В соответствии с этой системой у испытуемого делают три измерения черепа (рис. 2.2): а) продольный размер черепа – измеряют расстояние по черепу между точкой перехода лобной кости в переносицу (назион) и затылочным бугром; б) поперечный размер черепа – измеряют расстояние по черепу через макушку (вертекс) между наружными слуховыми проходами обоих ушей; в) длину окружности головы, измеренной по этим же точкам. Подробно см. правила расчёта в [Методы исслед. в психофизиол., 1994, с. 10–12]. Измеренные расстояния разделяют на интервалы, причём длина каждого интервала, начинающегося от точки измерения, составляет 10%, а остальные интервалы составляют 20% от соответствующего размера черепа. Имея эти основные размеры, поверхность черепа можно разметить в виде сетки, на пересечении линий которой накладываются электроды (см. рис. 2.2). Электроды, расположенные по средней линии, отмечаются индексом Z; отведения на левой половине головы имеют нечётные индексы, на правой – чётные. Отведения в системе «10–20»: фронтальные ( F1, F2., F3 F4, Fz); лобные полюса ( Fp1, Fp2); центральные (С 1 , С2 , С3 ,С4 , С z); париетальные (Р1, Р2 Р3 Р4, Р z); темпоральные ( T1 , Т2, Т3 , Т4, Т5 , Т z); окципитальные (О1 ,О2 , 0 z).

В системе расположения электродов «10–10», которая является модификацией системы «10–20», количество отведений увеличено; эта система предусматривает установку дополнительных электродов, смещённых по отношению к положению электродов в системе «10–20» вперёд (обозначаются ') или назад ("), например, отведение С1' в системе «10–10» находится кпереди от отведения С1 в системе «10-20» [Chartian et al., 1985].

ЭЭГ продолжает оставаться сложным для расшифровки показателем мозговой активности. При некоторых состояниях субъекта в этом сложном колебательном процессе можно визуально выделить ритмические колебания определённой частоты (рис. 2.3). Альфаритм – наиболее часто встречающийся ритм, который состоит из волн правильной, почти синусоидальной формы, с частотой от 8 до 13 Гц у разных лиц и с амплитудой 50–100 мкВ. Наблюдается он в состоянии спокойного бодрствования, медитации и длительной монотонной деятельности. В первую очередь появляется в затылочных областях, где он наиболее выражен, и может периодически распространяться на другие области мозга. Часто амплитуда колебания альфа-ритма постепенно увеличивается, а затем уменьшается. Этот феномен получил название «веретено альфа-ритма». Длительность веретён составляет от долей секунды до нескольких секунд. Если испытуемого отвлечь каким-либо раздражителем, то этот ритм десинхронизируется, т.е. заменяется низкоамплитудной высокочастотной ЭЭГ. Этот феномен в литературе обозначается терминами реакция активации, пробуждения или десинхронизации. По данным Л.А. Новиковой [1978], у слепых людей с врождённой или многолетней слепотой, а также при сохранности только светоощущения альфа-ритм отсутствует. Исчезновение альфа-ритма наблюдалось в случае атрофии зрительного нерва. Автор предполагает, что альфа-ритм совпадает с наличием предметного зрения. По мнению П.В. Симонова [1979], альфа-ритм связан с квантованием внешних стимулов. Мю-ритм (роландический или аркообразный) регистрируется в роландической борозде. Близок по частоте и амплитуде к альфа-ритму, но отличается формой волн, имеющих округлённые вершины и поэтому похожих на арки; встречается редко. Связан с тактильным и проприоцептивным раздражением и воображением движения. Выражен у слепых, компенсирующих потерю зрения развитием тактильного и двигательного исследования среды [Новикова, 1966]. Каппа-ритм сходен по частоте с альфа-ритмом, регистрируется в височной области при подавлении альфа-ритма в других областях в процессе умственной деятельности. Альфа-, мю и каппа-ритмы относят к одной частотной категории ритмов ЭЭГ [Коган, 1983]. Бета-ритм – колебания в диапазоне от 14 до 30 Гц с амплитудой 5–30 мкВ. Наиболее выражен в лобных областях, но при различных видах интенсивной деятельности резко усиливается и распространяется на другие области мозга [Коган, 1983]. Гамма-ритм – колебания потенциалов в диапазоне выше 30 Гц. Амплитуда этих колебаний не превышает 15 мкВ и обратно пропорциональна частоте. Наблюдается при решении задач, требующих максимального сосредоточения внимания. Тета-ритм имеет частоту 4–8 Гц и амплитуду от 20 до 100 мкВ (и даже более). Наиболее выражен в гиппокампе. Связан с поисковым поведением, усиливается при эмоциональном напряжении. П.В. Симонов [1979] считает, что тета-ритм связан с квантованием извлекаемых из памяти энграмм. Дельта-ритм состоит из высокоамплитудных (сотни микровольт) волн частотой 1–4 Гц. Возникает при естественном и наркотическом сне, а также наблюдается при регистрации ЭЭГ от участков коры, граничащих с областью, поражённой опухолью. Сверхмедленные потенциалы коры имеют период колебаний от нескольких секунд до нескольких часов и амплитуду от сотен микровольт до десятков милливольт. Регистрируются специальными усилителями постоянного тока. Условно их разделяют на 5 групп в соответствии с периодом (Т) колебаний: секундные (Т=3–10 с), декасекундные (Т=15–60 с), минутные (Т=2–9 мин), декаминутные (Т=10–20 мин) и часовые (Т=0,5–1,5 ч) [Коган, 1969]. Наблюдаются при бодрствовании, сне, повторных предъявлениях проб на объём оперативной памяти, патологиях мозга, действии фармакологических веществ [Илюхина, 1977].

Перейти на страницу:

Юрий Александров читать все книги автора по порядку

Юрий Александров - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


Основы психофизиологии - Александров Ю.И. (ред.) отзывы

Отзывы читателей о книге Основы психофизиологии - Александров Ю.И. (ред.), автор: Юрий Александров. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*