Фрэнк Райан - Виролюция. Важнейшая книга об эволюции после «Эгоистичного гена» Ричарда Докинза
Ваше развитие как на стадии эмбриона, так и после рождения — чрезвычайно сложный, заранее запрограммированный и скрупулезно, до мельчайших мелочей отлаженный процесс. Но и он временами дает сбой. Потому вряд ли удивительно то, что, по разным критериям, проблемы развития встречаются у значительной части человеческой популяции: от двух с половиной до пяти процентов ее. Путешествуя по страницам этой книги, вы уже видели: в механизмах, управляющих нашим развитием, в изощренных процессах, сопровождающих наше эмбриональное развитие, может крыться генетическая подоплека заболеваний, проявляющихся как при рождении, так и позднее, в течение жизни. Хотя факторы окружающей среды долгое время считали способными повлиять на проявления болезни при эмбриональном развитии либо после рождения, только сейчас врачи стали понимать, как именно на молекулярном уровне эти факторы сказываются на функционировании генома. И сколь же знаменательным выглядит то, что мы, исследуя сложности взаимодействия окружающей среды и генома, оказываемся перед тайной, столь привлекавшей и мучившей Уоддингтона — и Аристотеля!
Выше я описал, как все без исключения клетки нашего тела — клетки кожи, печени, глаза, мозга и прочие — происходят из единственной всепорождающей оплодотворенной яйцеклетки, зиготы. Нам известно: ядерный геном этой клетки содержит генетический код, унаследованный от отца и матери. Митохондрии же мы наследуем только от матерей. Все наши весьма отличающиеся клетки во всех тканях и органах наших тел содержат тот же ядерный и митохондриальный геном, что и зигота. Все они содержат те же самые ядерные ДНК — как вирусные, так и «позвоночные», и те же самые митохондриальные ДНК, упакованные в бактериальное кольцо. Но когда зигота делится, производя дочерние клетки, а они, в свою очередь, делятся снова и снова, наделяя потомство все тем же генетическим набором зиготы, — что же заставляет эти идентичные клетки измениться, утратить идентичность, превратиться в разные ткани и органы, позволяя нам развиться и вырасти в полноценное взрослое существо?
В 1958 году американский биолог Дэвид Л. Нэнни из университета Мичигана предложил возможный ответ на этот вопрос[141]. Нэнни отнюдь не игнорировал открытую за пять лет до того ДНК, признавая, что «генетический материал», хотя еще и не «исследованный в достаточной степени, находит значительное подтверждение в экспериментах». Разделяя растущее увлечение научного сообщества ДНК, восхищаясь ее гениальной простотой как носителя генетического кода, Нэнни заглянул дальше — причем гораздо дальше. Вот что он пишет: «Обнаружение ДНК позволяет провести гораздо более четкое, нежели ранее, концептуальное различие между двумя типами управляющих систем клетки». Курсив — мой. Одна такая система — это, по выражению Нэнни, «библиотека клеточных черт», основанная на ДНК как генном материале. Вторая, названная им «вспомогательным механизмом с другими принципами функционирования», определяет, «какие именно черты проявятся в определенной клетке». Думаю, вряд ли кто-либо во времена Нэнни четче обозначил различие между двумя важнейшими системами управления разной природы, названными Нэнни «генетической» и «эпигенетической».
Уже в то время были если не прямые, то косвенные свидетельства в пользу того, что бактерии с абсолютно одинаковым геномом могут выглядеть по-разному и различно вести себя. Поскольку бактерии едва ли меняют геном в течение жизни, разница подразумевает действие эпигенетического механизма. Более того, эти эпигенетически произведенные изменения воспроизводятся при делении клеток и повторяются бесконечно — другими словами, эпигенетические изменения закрепляются и воспроизводятся при бактериальном эквиваленте митоза, дающего начало клеткам, формирующим наши органы и ткани.
Учитывая степень лихорадочного оживления, последовавшего за открытием ДНК, не удивительно, что сменилось поколение, а то и два перед тем, как биологи осознали: все удивительные действия и свойства «кода жизни» и связанной с ним молекулярной химии недостаточны. Факт остается фактом: разницу между клетками печени, сердца, мозга нельзя объяснить исключительно действием генов либо управляющих генетических последовательностей, либо даже изумительно точных и отлаженных генетических сигнальных последовательностей, контролирующих процессы включения и работы генов. Слова Нэнни оказались пророческими. В клетке есть некий механизм, управляющий самими генами, и, вероятно, этот же механизм регулирует генную управляющую и сигнальную системы.
Спустя три года после публикации новаторской работы Нэнни английский биолог Мэри Ф. Лайон предположила, что у самок млекопитающих одна из Х-хромосом должна быть деактивирована на ранней стадии эмбрионального развития. Здесь уже неоднократно писалось о том, что у самок — две Х-хромосомы, а у самцов лишь одна. Это значит, что, если у самок будут задействованы обе хромосомы, геном самок при развитии будет задействован принципиально иным образом, чем геном самцов. Лайон, окончившую Кембриджский университет, Уоддингтон зазвал работать в Институте генетики в Эдинбурге. Именно там, изучая генетику мышей, Лайон предположила: деактивация второй Х-хромосомы у самок важна при эмбриогенезе, поскольку гарантирует, что и мужские, и женские эмбрионы будут подвергаться действиям одной и той же «дозы» Х-хромосомных генов[142]. Предсказание Лайон должным образом подтвердилось: у женских эмбрионов отключение в самом деле происходит на шестнадцатый день эмбриогенеза и служит важным стабилизирующим механизмом развития эмбриона.
Мы с вами уже сделали два очень существенных шага в сторону понимания современной эпигенетики, но остается главный вопрос: каким образом эпигенетический механизм действует? Как это часто случается в биологии, ответ подсказали микробы, в чьем поведении ученые заметили необычные черты.
В бактериях действует особый специализированный химический инструмент, на биологическом жаргоне называемый «ограничивающим энзимом». Он рвет ДНК на куски. Эти химические «секиры» реагируют на последовательности ДНК, модифицированные добавлением небольшого радикала метила. Метил — это одновалентный радикал простейшей органической молекулы, состоящий из единственного атома углерода, присоединенного к трем атомам водорода. Поскольку углерод имеет валентность четыре, у метиловой группы остается свободная связь, и посредством ее этот радикал может присоединяться к атомам и молекулам (обозначается он так: — СН3). Генетики обнаружили удивительный факт: метилированную ДНК химические «секиры» не трогают, но если ДНК не метилирована, «секиры» рубят ее на части. У бактерий это служит защитой от вирусов — ДНК вторгающихся вирусов не метилированы. Потому бактерия может распознать чуждость вторгшейся ДНК, и «секиры» тут же исполняют защитную функцию, уничтожая агрессора. Потому исследователи предположили: метилирование ДНК сделает ее невидимым для мощных химических анализаторов клетки.
В год смерти Уоддингтона (1975) Робин Холлидей, глава Отделения генетики Национального института медицинских исследований в Лондоне, вместе со своим аспирантом Джоном Е. Пью сделал еще один принципиальный шаг к пониманию эпигенетического механизма. По их мнению, присоединение метиловой группы к одной из четырех кодирующих «букв» ДНК, нуклеотиду цитозину, по всей длине гена либо управляющей последовательности может играть важную роль в регулировке действия этого гена. А от этого всего шаг до осознания того, что подобное регулирование может определять судьбу клеток в процессе нормального развития эмбриона[143]. Ныне известно, что процесс, названный «цитозиновой метиляцией», — один из главнейший эпигенетических механизмов, решающих судьбу каждой отдельной клетки при развитии эмбриона. Он продолжает играть фундаментальную роль в управлении клетками каждой ткани и органа на протяжении всей жизни взрослого человека.
Теперь самое время повторить вопрос Уоддингтона: как же возникают очень разные клетки, формирующие наши органы и ткани? В статье, написанной совместно с Пью, Холлидей дал ответ на него. Эпигенетические процессы включают и выключают определенные гены в различных клетках. Именно такое управление экспрессией генов, в особенности «генов развития», определяющих ключевые стадии развития эмбриона, приводит к тому, частью чего станет клетка — кожи, печени, глаза или мозга.
В 2009 году я связался с Холлидеем, в то время жившим в Австралии, чтобы поговорить о его открытии. Я поинтересовался, что же особенного в метиле и его связи с ДНК?
— В метиле всего четыре атома — очень простая группа. Ее присоединение не мешает химической активности цитозина, то есть связи цитозина с гуанином. В 1975 году мы уже знали: в ДНК присутствует метилированный цитозин. Правда, мы не знали, зачем он там и какие функции несет, хотя, конечно, ожидали, что он вовлечен во что-то важное. А теперь уже знаем: он — маркер, сигнал, который могут распознать протеины (такие, как факторы транскрипции), участвующие в процессе экспрессии генов.