Владимир Вакула - Биотехнология: что это такое?
А теперь выберем среди бесконечного потока сообщений о делах, открытиях и достижениях биотехнологии всего одно. Ну хотя бы то, в котором говорится о синтезировании ростового гормона человека. И попытаемся сообща разобраться, что именно, какие медицинские, человеческие, Социальные проблемы таятся за сухой констатацией факта. Для чего нам вновь придется обратиться к помощи литературы художественной. И на сей раз к приключенческой. Но вовсе не замысловатый сюжет повести Еремея Парнова «Ларец Марии Медичи» привлек наше внимание к ней.
Дело здесь в ином, во вполне банальной жизненной ситуации, в которой по воле автора оказываются главные герои. Их, как и положено, двое — он и она, Вера Фабиановна и Лев Минеевич. Она — высокая, властная и по сей день замечательно красивая старуха, он — маленький, пухленький старичок с детскими ручонками. И тот и другой не раз и не два задумывались на склоне лет, почему же, собственно, так и не соединились их судьбы? А виной тому была так, безделица, совсем пустячок — маленький рост Льва Минеевича.
Стоит ли дальше рассуждать по этому поводу? Или и так всем все понятно?
Между тем беде Льва Минеевича, появись он на свет лет эдак на 65 попозже, вполне можно было б помочь. По крайней мере, искусственно синтезируемый соматотропин(гормон роста), продуцируемый в организме гипофизом, важнейшей железой эндокринной системы, сегодня — реально существующий препарат. И, как очевидно из вышеприведенной информации, производство его весьма доходное, а сам он — предмет коммерции многих фирм, занимающихся сбытом биотехнологической продукции.
Мужчина в очках стреляет из лука в женщину
Но будем объективны. «Открытие» соматотропина произошло задолго до XX столетия. Правда, врачи и алхимики средневековья не предполагали, какое именно активное начало содержится в экстракте, приготовленном из железы, что расположена у самого основания черепа. Но зато они знали, как из него сделать экстракт и как с его помощью вырастить чудовищно гигантских крыс.
Экспериментировали с гипофизом и в XIX столетии, а в XX веке гипофизы умерших или погибших по разным причинам людей стали для медиков и фармакологов единственным источником соматотропина, с помощью которого они возвращали нуждающимся в помощи детям, в некотором смысле обделенным природой, высокий рост. А вместе с ним — красоту и уверенность в себе.
Но курс лечения долог и эффективен только при наличии нужных количеств дефицитного гормона. Под словами «нужных количеств» здесь имеются в виду вполне конкретные цифры: полный курс лечения, обеспечивающий мальчику или девочке нормальное развитие, предполагает такое количество соматотропина, которое в состоянии наработать 100—150 человеческих гипофизов. А где их столько взять?
Ну зачем же так категорично ставить вопрос, возможно, поправит меня читатель, ведь никто не запрещает специалистам воспользоваться гипофизами животного происхождения, они ведь тоже продуцируют соматотропин.
В том-то и дело, что человеку нужен только человеческий гормон роста. Препарат животного происхождения (точнее, выделенный из гипофиза крупного рогатого скота) ему не подходит, поскольку гормон роста — видоспецифический.
Правда, как и во всяком правиле, здесь тоже есть исключение. Крыса, например, на соматотропин любого происхождения реагирует как на свой собственный, столь пластична и легко приспособляема ее природа.
Но человек — не крыса; его «любой» гормон не устраивает. Значит, уповать приходится только на чужую беду. Вот почему до недавнего времени все производство натурального соматотропина основывалось на экстрактах, приготовленных из трупных гипофизов.
Так могли ли не сетовать медики на непреодолимость видового барьера, тем более что и естественный соматотропин не всегда оказывался идеально подходящим. Недаром же среди информации, предшествовавших нашему разговору о соматотропине, есть и такая: «...ФДА наложило запрет на препарат натурального ростового гормона в связи с тем, что есть подозрения в возможности его опасного загрязнения».
Здесь-то (в какой уж раз!) и пришла на помощь исследователям биотехнология, предложившая фармакологии и медицине «наработать» своими методами столь дефицитный гормон.
А как же знаменитая видеоспецифичность соматотропина, которую, как говорилось несколько выше, и не обойти и не объехать? Если она — камень преткновения на пути использования в медицине гипофиза крупного рогатого скота, так вряд ли уступит свои «позиции» и бактериям?
Дело-то как раз в том, что ей никому и ничего уступать не придется, потому что молекула бактерии и молекула человеческого гормона роста имеют общий фрагмент, отвечающий за ее биологическую активность, — так называемый кор (мы уже встречались с аналогичным случаем на протяжении нашего рассказа. Помните участок, отвечающий за наработку одной из незаменимых аминокислот: о нем говорилось в первой части книги). И если бы удалось каким-либо образом вырезать, отщепить этот самый кор в человеческой молекуле, пересадив его затем в геном бактерии, то она начала б продуцировать человеческий соматотропин.
Но ни отщепить, ни вырезать кор не удалось. Химические реакции, пользуемые в таких случаях исследователями вместо скальпеля и ножниц, употребляемых в хирургии, лишь дробили соматотропин, а осколки его не давали практически никакой ростовой активности.
И кто знает, как, по какому пути направилась бы в дальнейшем, пытливая мысль исследователей, если б к тому времени уже не существовало знаменитого метода Меррифилда — твердофазного синтеза белков. Вспомните, ученый «пришивал» к поверхности твердого носителя собираемые в определенной последовательности аминокислоты полипептидов.
Этот прославленный метод и на сей раз сослужил науке добрую службу. Хотя работа в данном случае предстояла совсем не из легких, ведь требовалось соединить в единую цепь все 191 аминокислоту молекулы гормона человеческого роста.
Но, как известно, то, что пройдено раз одним человеком, может быть повторено другим. Тем более что со времени Р. Меррифилда твердофазный метод претерпел некоторые усовершенствования. Его теперь осуществляют и без участия человека.
Делается это так: в специальный синтезатор, представляющий собой автоматизированное устройство по производству белка, загружаются нужные реактивы, в микропроцессор вводят необходимую информацию о последовательности «сборки» аминокислот, и через несколько дней исследователь оказывается счастливым обладателем необходимого ему для эксперимента белка.
Именно для эксперимента. Я не оговорился. В индустриальных масштабах к искусственному синтезу белков с помощью автоматизированных устройств пока что практически и не приступили. Такая «задержка» с освоением промышленных способов их синтеза объясняется сразу несколькими причинами.
Во-первых, синтезатор производит пока что весьма скромные количества человеческого гормона роста.
Во-вторых, сколь ни совершенны современные микропроцессоры, но и они допускают ошибки при реализации программы сборки аминокислот. И чем длиннее их цепи, чем сложнее синтезируемый белок, тем больше ошибок накапливается в ней, в силу чего «на выходе» из синтезатора оказывается продукт, весьма загрязненный ненужными примесями. Так что очистка полученного белка сама превращается в сложную проблему.
Другими словами, рукотворный синтезатор пока не идет ни в какое сравнение с естественным, природным синтезатором — живой клеткой, в котором белки производятся по аналогичной схеме, а вот ошибки исключаются вовсе. Ведь в клетке без устали трудится, не зная ни смен, ни вахт, собственное ОТК — самоконтроль.
Вот почему по точности и эффективности с клеткой-производством не может сравниться ничто на свете — в ней молекула управляет молекулой.
Так снова на повестке дня появилась чисто биотехнологическая идея — вернуться к возможностям живого синтезатора — клетке. Уж ее-то «микропроцессор» не допустит ни малейшего отклонения от заданной программы, поскольку вся наследственная информация клетки закодирована в ДНК — нитевидной, скрученной в двойную спираль молекуле дезоксирибонуклеиновой кислоты. Код каждой отдельной аминокислоты «знает» свой триплет — комбинацию из трех нуклеотидов ДНК — трех «букв» генетической азбуки, а обе цепи ДНК соответствуют друг другу как негатив соответствует позитиву. И это тоже понятно, ведь четыре нуклеотида ДНК способны к специфическому связыванию между собой, образуя две взаимодополняющие друг друга цепи.
С чего же начинается в живой клетке синтез белка? С того, что ген — единица наследственной информации, представляющий собой конкретный участок ДНК, принимает на себя роль матрицы, на которой синтезируется информационная, или матричная, рибонуклеиновая кислота — мРНК. Как только это свершается, наступает время следующей ступени биосинтеза, получившей в науке «имя» трансляции — ив рибосомах (особых субклеточных частицах) в соответствии со структурой мРНК синтезируется молекула белка.