Вилейанур Рамачандран - Мозг рассказывает. Что делает нас людьми
Группа исследователей во главе с Эндрю Уиттеном из Шотландии сделала такое же предположение одновременно с нами, но первые экспериментальные подтверждения пришли из нашей лаборатории в Сан-Диего (США) в сотрудничестве с Эриком Альтшулером и Хайме Пинедой. Нам нужно было найти способ подсмотреть за деятельностью зеркальных нейронов неинвазивным путём, не вскрывая детям череп и не тыкая в него электроды. К счастью, мы нашли лёгкий способ сделать это, используя ЭЭГ (электроэнцефалограмму), где используется пучок электродов, размещённых на голове таким образом, чтобы улавливать волны мозговой активности. ЭЭГ стало первой технологией, позволяющей отобразить деятельность мозга, задолго до компьютерной томографии и МРТ. Она была разработана в начале XX века и используется врачами начиная с 1940-х годов. В разных состояниях бодрствования, сна, тревоги, сонном, мечтательном, сконцентрированном и т. д. мозг испускает волны различной частоты. Более полувека тому назад учёные обнаружили, и это упоминается у нас в четвёртой главе, что всякий раз, когда человек совершает произвольное движение (например, сжимает и разжимает кисть руки), происходит подавление одного из компонентов электроэнцефалограммы (ЭЭГ), называемого мю-ритмом. Впоследствии было доказано, что мю-волны исчезают и в том случае, когда испытуемый наблюдает, как то же самое действие совершает другой человек. Следовательно, мы предположили, что реакцию подавления мю-волн можно использовать в качестве простого, неинвазивного и недорогого инструмента для изучения активности зеркальных нейронов.
Мы провели пробный эксперимент со среднесохранным аутичным ребёнком, Джастином, чтобы проверить, насколько это работает (совсем маленькие дети, дети с низким уровнем развития интеллектуальных функций не должны были участвовать в этом пилотном исследовании, поскольку мы хотели удостовериться, что различия в системе зеркальных нейронов аутичных и нормальных детей, которые мы найдём, не связаны с вниманием, пониманием инструкций или общим эффектом задержки умственного развития). Джастин был направлен к нам местной группой поддержки аутистов. Как и у Стивена, у него были многие характерные симптомы аутизма, но он был способен следовать простым инструкциям, например «посмотри на экран», и не возражал против электродов на голове.
Как и нормальные дети, Джастин показал стабильную мю-волну, пока он пассивно сидел на месте, и мю-волна угнеталась, как только мы просили его совершить простые произвольные движения. Но в том случае, когда он наблюдал за выполнением того же движения другим человеком, подавления мю-волн не происходило. Это наблюдение стало важным доказательством нашей гипотезы. Мы заключили, что система моторных командных нейронов у ребёнка оставалась целой и невредимой. Он мог, в конце концов, открывать двери, есть картофельные чипсы, рисовать картины, забираться на лестницу и т. д., но функции его системы зеркальных нейронов были нарушены. Мы представили этот единичный случай на ежегодной встрече Общества нейробиологов в 2000 году и провели исследование ещё с десятью детьми в 2004-м. Мы получили те же самые результаты. Это наблюдение за последние годы было многократно подтверждено разными группами учёных с использованием различных технологий[20].
Например, группа учёных под руководством Рииты Хари в Университете науки и технологии Аалто подтвердила наши предположения, используя МЭГ (магнитоэнцефалографию), которая так же подобна ЭЭГ, как реактивный самолёт и биплан. Позднее Мишель Виллалобос и её коллеги из Государственного университета СанДиего, используя ФМРТ, обнаружили у аутичных пациентов ухудшение функциональных связей между зрительной корой и переднелобным участком зеркальных нейронов.
Другие исследователи проверили нашу гипотезу, используя ТМС (транскраниальную магнитную стимуляцию). ТМС в определённом смысле прямо противоположна ЭЭГ. Вместо того чтобы пассивно «подслушивать» электрические сигналы, зарождающиеся в мозге, ТМС сама создаёт электрические потоки в мозге с помощью мощного магнита, размещённого на голове. (К сожалению, многие области мозга спрятаны очень глубоко, но достаточное количество других участков, включая двигательную кору, находятся прямо под черепом, где ТМС может их легко «зацепить».) Исследователи использовали ТМС для стимуляции двигательной коры и записывали электрическую активность в мышцах в то время, когда субъект наблюдал, как другие люди совершают действия. Когда нормальный субъект наблюдает за другим человеком, совершающим действие, например сжимающим теннисный мячик правой рукой, в мышцах правой руки субъекта регистрируется небольшой всплеск электрического «шума». Несмотря на то что субъект сам не совершает сжимающего движения, простое наблюдение за действием приводит к незначительному, но регистрируемому увеличению готовности к действию в мышцах, которые сократились бы, если бы он это действие совершал сам. Двигательная система субъекта автоматически копирует это действие, но в то же время автоматически подавляет двигательный сигнал спинного мозга, препятствуя исполнению действия, и все же, несмотря на это, тончайший ручеёк подавленной двигательной команды все равно проскальзывает и достигает мышцы. Вот что происходит у нормального человека. Однако аутичные субъекты не показали никаких признаков повышения мышечного потенциала во время наблюдения за действием. Их система зеркальных нейронов не сработала. Эти результаты, взятые вместе с нашими собственными, представляют убедительное доказательство нашей гипотезы.
Гипотеза зеркальных нейронов может объяснить некоторые из наиболее необычных симптомов аутизма. Так, например, исследователям давно известно, что дети с подобным нарушением нередко испытывают трудности с интерпретацией пословиц и метафор. Если попросить аутичного ребёнка «взять себя в руки», он может буквально начать хватать своё тело. При просьбе объяснить значение «не все то золото, что блестит» мы заметили, что некоторые интеллектуально сохранные дети дают буквальные ответы: «Это значит, что не все жёлтые металлы золото». Не все аутичные дети испытывают сложности с метафорами, но это все равно требует своего объяснения.
В когнитивной науке есть течение «отелесненности» познания (embodied cognition) подход к познанию, идущий от человеческого тела и предполагающий, что человеческая мысль на глубинном уровне формируется с помощью своей связи с телом и врождёнными свойствами человеческой сенсорики и двигательных процессов. Эта точка зрения противоположна классической, доминирующей в когнитивной науке начиная с середины XX века и полагающей, что мозг это «универсальный компьютер», по воле случая соединённый с телом. Несмотря на то что точка зрения отелесненного, или, как ещё называют, воплощённого, сознания, может, и переоценена, она приобрела широкую поддержку, целые книги были написаны на эту тему. Разрешите мне привести один типичный эксперимент, который я проводил в сотрудничестве с Линдси Оберман и Петром Винкельманом. Мы доказали, что, если взять карандаш в рот, как грызло от уздечки, растянув рот в широкую, фальшивую улыбку, у человека будут сложности с распознаванием улыбки другого человека (но не выражения неодобрения). Это происходит потому, что такое кусание карандаша задействует практически те же мышцы, что и улыбка, и это переполняет систему зеркальных нейронов, создавая путаницу между действием и восприятием. (Определённые зеркальные нейроны срабатывают, когда вы делаете определённое выражение лица и когда вы наблюдаете точно такое же выражение на лице другого). Эксперимент показал, что действие и восприятие гораздо теснее друг к другу в мозге, чем это предполагалось ранее.
Так как же это связано с аутизмом и метафорами? Мы недавно заметили, что наши пациенты с поражениями левой надкраевой извилины, страдающие апраксией неспособностью имитировать сложные произвольные действия, такие как помешивание чая или забивание гвоздя, также испытывают сложности с интерпретацией метафор, связанных с действием, таких как «дотянуться до звёзд». Поскольку надкраевая извилина также содержит зеркальные нейроны, наш эксперимент предполагает, что система зеркальных нейронов у человека участвует не только в интерпретации сложных действий, но и в понимании метафор, связанных с действием, и конечно в других аспектах «отелесненного» познания. У обезьян тоже есть система зеркальных нейронов, но для того, чтобы они могли понимать метафоры, им необходимо достичь более высокого уровня развития, которого достигли только люди.
Гипотеза зеркальных нейронов также даёт возможность понять проблемы с языком у аутичных детей. Зеркальные нейроны совершенно точно задействованы, когда ребёнок начинает повторять слова и звуки, которые слышит. Это может потребовать внутреннего перевода: отображения звуковых образов в соответствующие двигательные образы и наоборот. Существует два варианта работы такой системы. Первый: когда мы слышим слово, следы памяти о фонемах (звуках речи) всплывают в слуховой коре. Затем ребёнок перебирает случайные звукосочетания, используя обратную связь, чтобы сравнить результат со запомненным, и постепенно приводит его в полное соответствие (мы делаем так, когда напеваем про себя недавно услышанную мелодию и затем начинаем петь вслух, постепенно улучшая качество и приводя её в соответствие с напеваемым про себя мотивом). Второй: сети, переводящие услышанные звуки в произносимые слова, могли получить свою специализацию путём естественного отбора. В любом случае в конечном результате мы будем иметь систему нейронов, обладающих свойствами, схожими со свойствами зеркальных нейронов. Если бы ребёнок мог без задержки и обратной связи после прослушивания повторить группу фонем, которую он услышал впервые, это бы свидетельствовало в пользу врождённого механизма для перевода слуха в речь. Таким образом, этот уникальный механизм может быть настроен по-разному. Но, независимо от этого, наши результаты предполагают, что нарушения в его первоначальной настройке могут привести к фундаментальной недостаточности при аутизме. Наши эмпирические данные с подавлением мю-волны подтверждают это и позволяют найти единое объяснение целому спектру с первого взгляда не связанных симптомов.