Краткая история биологии - Азимов Айзек
Если подействовать на плесень рентгеновскими лучами, возникают мутанты. Некоторые из них теряют способность продуцировать нужные аминокислоты. Один мутантный штамм, например, потерял способность образовывать аминокислоту лизин, и, чтобы поддержать жизнь этого штамма, ее приходилось вводить в питательную среду. Подобная дефективность, как показали Бидл и Тэтум, зависит от отсутствия специфического фермента, имеющегося у нормального немутантного штамма. Отсюда они сделали вывод, что способность продуцировать лизин представляет специфическую функцию особого гена, управляющего образованием данного фермента.
Молекулы нуклеиновой кислоты, передаваемые через сперматозоид или яйцеклетку, обладают способностью продуцировать особый набор ферментов. Назначение этих ферментов — управлять химизмом клетки. Химизм клетки в свою очередь ответствен за все свойства, наследственность которых и изучали Бидл и Тэтум. Таким образом, можно было перекинуть мостик от ДНК к физическим признакам организма. Так как ДНК генов остается в пределах ядра, а синтез белка протекает вне ядра, образование ферментов генами, вероятно, проходит через промежуточные продукты. Электронно-микроскопическое изучение клетки раскрыло более тонкие детали ее строения и определило точное место белкового синтеза.
В клетке в большом количестве были найдены организованные гранулы, значительно более мелкие, чем митохондрии, и потому названные микросомами (от греческих слов mikros — малый и soma — тело). В 1956 г. одному из наиболее энергичных исследователей микросом, американцу Джорджу Эмилю Паладе (род. в 1912 г.), удалось показать, что они богаты РНК (поэтому их переименовали в рибосомы). Тогда и обнаружили, что именно рибосомы являются местом синтеза белка.
Но генетическая информация от хромосом должна дойти до рибосом. Это осуществляет особая разновидность РНК, названная информационной; информационная РНК точно повторяет структуру определенного участка ДНК хромосом, составляющего единицу наследственной информации — ген, и переносится из ядра в цитоплазму клетки, где и прикрепляется к рибосоме. Но для того, чтобы синтезировались белки, необходимы аминокислоты, которые образуются при помощи ферментов в самой клетке или поступают с пищевыми продуктами. Проблему доставки аминокислот в рибосомы впервые изучил американский биохимик Мелон Буш Хогленд (род. в 1921 г.). Он установил, что каждая аминокислота, прежде чем попасть к месту синтеза белков, соединяется с транспортной РНК, которая и переносит их на соответствующее место информационной РНК.
Оставалось неясным: как молекула данной транспортной РНК прикрепляется к данной аминокислоте? Проще всего было бы представить, что аминокислота прикрепляется к пуринам и пиримидинам нуклеиновой кислоты; к каждому пурину или пиримидину — разные аминокислоты. Однако из 20 различных аминокислот молекулы белка на молекулу нуклеиновой кислоты приходится лишь четыре пурина и пиримидина. По этой причине вполне очевидно, что к каждой аминокислоте должна подходить комбинация по крайней мере из трех нуклеотидов. (Из трех нуклеотидов возможны 64 различные комбинации.)
Подгон комбинаций тринуклеотидов к аминокислоте (то есть какая комбинация нуклеотидов и в какой последовательности в составе информационной РНК соответствует определенной аминокислоте) представлял самую важную биологическую проблему начала 60-х годов, относящуюся к расшифровке генетического кода. В этом направлении наиболее активно работает американский биохимик Северо Очоа (род. в 1905 г.).
Происхождение жизни
Итак, достижения молекулярной биологии к середине XX в. чрезвычайно сильно укрепили материалистические позиции. Всю генетику можно было истолковать с точки зрения химии, согласно законам, одинаково справедливым для живой и неживой природы. Даже мозг подвергался этому натиску. Вполне возможно, что процессы обучения и запоминания являются не только процессами возникновения и закрепления нервных путей, но и представляют собой синтез и сохранение специфических молекул РНК.
Оставался незатронутым лишь один аспект биологии XIX в., в котором еще господствовала виталистическая точка зрения, — факт недоказанности самопроизвольного зарождения. Если формы жизни действительно никогда не могли развиться из неживой материи, как тогда возникла жизнь? Легче всего было предположить, что жизнь создана сверхъестественными силами. В 1908 г. шведский химик Сванте Август Аррениус (1859–1927) выдвинул гипотезу происхождения жизни без участия сверхъестественных сил. Он высказал мысль, что жизнь на Земле началась тогда, когда на нашу планету из космоса попали зародыши жизни. «Частицы жизни», носящиеся в бескрайних космических пространствах, переносимые давлением света от звезд, оседали то здесь, то там, осеменяя ту или иную планету. Гипотеза Аррениуса лишь отодвигала решение проблемы. Если жизнь была занесена на нашу планету извне, как она возникла там, откуда к нам попала?
А может быть, жизнь все-таки возникла из неживой материи? Колбы Пастера сохранялись стерильными в течение какого-то ограниченного времени; а если их оставить на миллиарды лет? Или вместо колб представить целый океан раствора в условиях, далеких от современных?
Нет причин думать, что основные химические вещества, складывающие живое, существенно менялись на протяжении веков. Весьма вероятно, что они не изменились. Действительно, аминокислоты, выделенные в небольших количествах из некоторых ископаемых организмов, насчитывающих десятки миллионов лет, оказались идентичными аминокислотам, встречающимся в живых тканях современных организмов. И все же химизм мира в целом мог измениться.
Новые данные по химии Вселенной позволили американскому химику Гарольду Клейтону Ури (род. в 1893 г.) предположить, что первичная атмосфера Земли состояла из водорода и водородсодержащих газов, таких, как метан и аммиак; в ней совершенно отсутствовал свободный кислород, а значит, в ее верхних слоях не было озона (одной из форм кислорода). Сейчас такой слой озона существует и поглощает значительную часть ультрафиолетовых лучей солнечного света. В бедной первичной атмосфере несущая энергию радиация, возможно, проникала до океана, где и вызывала такие реакции, которых в настоящее время уже не может быть. Постепенно могли создаваться комплексы молекул; при отсутствии жизни они не потреблялись, а скапливались. В итоге реплицирующиеся молекулы создавали комплекс нуклеиновых кислот, и это было основой жизни.
Благодаря мутациям и действию естественного отбора образовывались все более активные формы нуклеиновых кислот. Эти кислоты могли превратиться в клетки; последние, возможно, начали синтезировать хлорофилл. Фотосинтез (с помощью других процессов, в которые не вовлекались, вероятно, живые организмы) мог обогатить первичную атмосферу Земли свободным кислородом. А в такой атмосфере и в мире, где кишит жизнь, самопроизвольное зарождение описанного выше типа, вероятно, было бы уже невозможно.
Эта гипотеза, хотя и тщательно продуманная, в значительной степени остается гипотезой. Однако в 1953 г. один из учеников Ури, Стенли Ллойд Миллер (род. в 1930 г.), поставил очень интересный опыт. Он взял тщательно очищенную и стерилизованную воду и добавил к ней «атмосферу» из водорода, аммиака и метана. Миллер заставлял эту смесь циркулировать в герметически изолированном приборе, через который пропускал электрические разряды, имитирующие ультрафиолетовое солнечное излучение. Опыт шел в течение недели, после чего Миллер разделил содержимое прибора методом хроматографии на бумаге. В растворе обнаружились простые органические соединения и даже несколько простейших аминокислот.
В 1962 г. схожие опыты были повторены в Калифорнийском университете. К атмосфере добавляли этан (соединение, очень сходное с метаном, но содержащее два атома углерода). В результате было получено еще большее разнообразие органических соединений. И наконец, в 1963 г. подобным же образом синтезировали аденозинтрифосфат, один из основных высокоэнергетических фосфатов.