Kniga-Online.club
» » » » Александр Нейфах - Гены и развитие организма

Александр Нейфах - Гены и развитие организма

Читать бесплатно Александр Нейфах - Гены и развитие организма. Жанр: Биология издательство -, год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

Эта схема легко объясняет все трудности сохранения активности определенных генов в течение митотических циклов. Во время репликации ДНК и во время митоза ранее синтезированное активирующее вещество находится в цитоплазме, а после удвоения хромосом или после образования дочерних ядер вновь активирует те же самые гены, характерные для данной дифференцнровки (и в их числе и тот ген, активность которого пополняет в клетке запас активирующего вещества). Такая система, раз возникнув, далее поддерживает сама себя и уже не нуждается в тех факторах дифференцировки, которые ее однажды создали, т. е. запустили в менее дифференцированных клетках. Очевидно, что генов, определяющих синтез таких активирующих веществ, должно быть по меньшей мере столько, сколько типов дифференцированных клеток может быть в организме.

Никаких прямых доказательств «метаболической» гипотезы пока нет, но кандидатами на активирующие вещества могут быть и РНК, и негистоновые белки хроматина, о которых уже известно, что они участвуют в активации генов. Все как будто свидетельствует в пользу этой гипотезы, если бы не несколько случаев, которые очень трудно, а вероятно и невозможно объяснить с позиций «метаболической» гипотезы.

Вторую гипотезу можно назвать «структурной», потому что она не требует синтеза каких-либо специальных веществ, но предполагает изменения в структуре ДНК или всего хроматина. Согласно этой гипотезе, при возникновении дифференцировки в структуре генов и хроматина происходят такие изменения, которые делают эти гены активными. Изменения в структуре, раз возникнув, способны «помнить» о своей активности и сохраняться во время таких сложных процессов, как образование метафазных хромосом при делении клетки. Более того, эти особенности структуры должны во время репликации распространяться на обе двойные спирали ДНК.

Согласно нашим сегодняшним знаниям о природе хроматина, таким требованиям надежно удовлетворяют только изменения в первичной структуре ДНК, т. е. замена одних нуклеотидов другими или перемещения более крупных участков ДНК. Такие изменения (замены или перемещения), если они возникли, естественно, сохраняются в митозе, а при репликации ДНК оказываются в обеих новообразованных хромосомах, т. е. удваиваются. До сих пор, однако, неизвестно, существуют ли в дифференцированных клетках, кроме лимфоцитов, изменения в первичной структуре ДНК, и если да, то каков механизм их возникновения и обратимы ли они?

Значительно труднее представить сохранение и удвоение изменений не в виде последовательности нуклеотидов ДНК, а в конфигурации ее двойной спирали (вторичная структура ДНК) или в ее связях с белками, хотя такие гипотетические схемы существуют. И тем не менее, хотя представить себе «структурную» гипотезу значительно сложнее, чем «метаболическую», некоторые факты легче объяснить первой, чем второй.

3. Факты, не согласующиеся с «метаболической» гипотезой

Прежде всего мы обсудим явление, открытое английской исследовательницей М. Лайон, которое получило название «лайонизация Х-хромосомы». Как известно, самки млекопитающих имеют две Х-хромосомы, в то время как самцы — только одну. Х-хромосома несет много важных генов, и, очевидно, должен быть механизм, который бы как-то уравнивал количество генетической продукции (мРНК) в мужских и женских клетках. Оказалось, что у ранних зародышей млекопитающих на стадии 100–400 клеток происходит инактивация одной из Х-хромосом, которая образует компактный высокоспирализованный комочек, т. е. становится гетерохроматином. Эту компактную глыбку, так называемое тельце Барра, можно видеть только в ядрах клеток женского организма. Возможность определить пол, в идеале по одной клетке, уже используется в судебной медицине, а также в спорте для подтверждения пола у женщин-спортсменок. В ближайшем будущем этот метод будет использоваться для прижизненного определения пола у эмбрионов человека в первые месяцы беременности. Развитие этого метода позволит в перспективе регулировать пол потомства (путем отказа от продолжения беременности при нежелательном варианте).

Гетерохроматизация, или «лайонизация», одной из Х-хромосом происходит в каждой эмбриональной клетке случайно, но затем во всех потомках этой клетки гетерохроматинизированной остается та же самая хромосома. Если обе Х-хромосомы не идентичны, т. е. некоторые гены у них представлены разными аллельными вариантами, то весь организм становится мозаичным: в одних клетках работают одни варианты генов, а в других — другие мутантные варианты. Возникает вопрос: каким образом после того, как данная Х-хромосома гетерохроматинизировалась, она, вернее, ее потомки подвергаются такому же процессу снова и снова, после каждого митоза? Ведь в митозе обе Х-хромосомы суперспирализованы (компактизованы) одинаково и не отличаются друг от друга.

В чистых линиях животных обе Х-хромосомы совершенно одинаковы, и невозможно себе представить, чтобы какое-либо вещество отличило одну Х-хромосому от другой. Следовательно, лайопизированная Х-хромосома даже в метафазе митоза как-то «сама помнит» о своей лайонизации и возобновляет ее снова после митоза. Единственное разумное объяснение этому явлению состоит в том, что в действительности структура однажды лайонизированной Х-хромосомы становится в чем-то отличной от другой, но это отличие не удается заметить во время митоза и оно способно передаваться при репликации обоим потомкам данной Х-хромосомы.

Второй пример, который мы рассмотрим, также касается функционирования Х-хромосом у самцов и самок. Ho на этот раз речь идет о дрозофиле, у самок которой обе Х-хромосомы остаются активными. Компенсация дозы гена у них достигается иным путем: единственная Х-хромосома самца в клетках дрозофилы функционирует вдвое активнее, чем в клетках самок, т. е. на ней одной транскрибируется столько же РНК, сколько на двух Х-хромосомах самки. Р. Б. Хесин и Б. А. Лейбович в нашей стране получили препараты политенных хромосом из клеток слюнных желез самцов и самок. Распластанные на стекле и обработанные смесью спирта и уксусной кислоты, эти хромосомы были лишены не только всех белков цитоплазмы, но и части белков самих хромосом. Для того чтобы обнаружить активность этих хромосом, к ним добавляли бактериальную РНК-полимеразу и радиоактивные предшественники синтеза РНК. Оказалось, что и в этих условиях, хотя порядок транскрипции нарушался (из-за использования чужеродной РНК-полимеразы), на Х-хромосоме самца РНК синтезировалась вдвое интенсивнее, чем на каждой из двух Х-хромосом самок. И в этом случае «метаболическая» гипотеза оказывается бессильной. Так как все растворимые метаболиты клеток отсутствовали, то Х-хромосомы самца и самки могли отличаться только структурно. При этом, правда, нельзя исключить, что какие-то специфические белки, ответственные за интенсивность транскрипции, сохраняются на хромосомах.

Таким образом, несмотря на всю привлекательность и простоту «метаболической» гипотезы, существуют некоторые факты (мы привели только два из них), которые с ней никак не согласуются. Это заставляет нас искать какие-либо разумные варианты структурной гипотезы.

4. Варианты структурной гипотезы

Итак, несколько экспериментальных данных говорят о возможности таких структурных изменений, которые сохраняются при митозе и при репликации, могут передаваться в ряду клеточных поколений и обеспечивают эпигенетическую наследственность и стабильность дифференцировки.

Наиболее простым объяснением структурных изменений в хромосомах является возможность изменения первичной структуры ДНК. Если такие изменения происходят в обеих или даже в одной из двух цепей ДНК, то естественно, что далее они передаются путем обычной репликации всем потомкам той клетки, в которой эти изменения в первый раз произошли. Ho половыми клетками эти клетки уже стать не могут, или надо предусмотреть механизм, восстанавливающий первоначальную первичную структуру ДНК.

В литературе существует несколько гипотетических схем, объясняющих, как мог бы в ходе развития в результате действия определенных ферментов один нуклеотид, оставаясь в составе ДНК, превратиться в другой. И действительно, в отдельных работах такие изменения были отмечены, хотя механизм и молекулярная природа этих изменений неясны, да и сами факты требуют подтверждения. Кроме того, изменения в отдельных нуклеотидах так незначительно сказываются на общем составе ДНК, что заметить их обычными методами невозможно.

Существует еще один путь изменения ДНК — это ее модификация посредством метилирования. В клетке известен особый класс ферментов — метилазы, которые присоединяют CH3-группу к некоторым цитозиновым основаниям ДНК. Метилируются далеко не все цитозины, и доступность метилазам зависит от окружающих нуклеотидов. А это означает, что метилирование может быть достаточно специфичным. И действительно, есть данные, показывающие, что метилирование ДНК заметно выше в неактивных генах. Вместе с тем есть и менее специфичные метилазы, которые метилируют цитозин, лежащий вблизи метилцитозина, но на другой нити ДНК. Это создает возможность сохранения метилирования во время репликации. При образовании двух новых двойных спиралей ДНК старая нить в них сохранит метильные группы. Ho малоспецифическая метилаза тут же восстановит метилирование и на другой нити.

Перейти на страницу:

Александр Нейфах читать все книги автора по порядку

Александр Нейфах - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


Гены и развитие организма отзывы

Отзывы читателей о книге Гены и развитие организма, автор: Александр Нейфах. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*