Станислав Галактионов - Беседы о жизни
Итак, попытаемся с помощью нашего «прейскуранта» проанализировать реакцию окисления метилового спирта:
Расчет суммарной энергии связей компонентов, находящихся в левой части уравнения реакции, осуществляется очевидным способом:
Совершенно аналогично для правой части:
Если среди читателей нашей книги попадутся счетно-финансовые работники, они, вне всякого сомнения, воспримут эту страницу как нечто до боли знакомое. Да и не надо вовсе быть счетоводом или бухгалтером, чтобы установить полнейшее сходство приведенных табличек со счетами, выписываемыми, скажем, в сапожной мастерской или ресторане. Есть люди, считающие проверку ресторанных счетов признаком дурного тона; надеемся, что они не станут проверять также и наши расчеты, и мы не обманем их доверия. Ту же часть читателей, которые решат все же наши выкладки проверить, ожидает разочарование: у нас все правильно.
Результаты этих расчетов надо понимать следующим образом. Если нашу систему молекул «разобрать» на отдельные атомы, а затем сформировать из них совокупность веществ, соответствующую либо левой, либо правой части уравнения рассматриваемой реакции, то в первом случае выделилось бы 1140 ккал/моль, во втором — 1210. Во втором случае, таким образом, система должна «потерять» больше энергии — иначе говоря, комбинация 2Н2СО + 2Н2О является состоянием с более низким значением энергии, чем комбинация 2СН3ОН + О2. А это, в свою очередь, означает, что направленность рассматриваемой реакции определена уже хорошо знакомой нам тенденцией самопроизвольного перехода системы в состояние с более низким значением энергии. Освобождающаяся при этом энергия, равная 70 ккал/моль, то есть разности энергий двух состояний, выделяется в виде тепла.
Теперь понятно также, почему не идет самопроизвольно упомянутая реакция разложения метилового спирта на метан и кислород:
2CH3OH → 2CH4 + O2.
Если повторить наши нехитрые расчеты для этой реакции, то окажется, что для перестройки системы в требуемом направлении нужна затрата энергии — 90 ккал/моль. Иными словами, такая реакция предполагает переход из состояния с низким уровнем энергии в состояние с более высоким уровнем, что, как мы знаем, невероятно.
Правда, если уж быть совершенно точными, то придется признаться, что использованный нами метод расчета энергии, высвобождающейся в результате реакции, — несомненно, самый простой, — к сожалению, не является универсальным. В его основу положено предположение, что связь данного типа имеет одну и ту же энергию в любом соединении, а это справедливо лишь для очень ограниченного круга соединений. Для большинства реакций подобного рода расчет выглядит намного сложнее (напомним еще раз: квантовая механика!), но всегда его конечный результат — разница в энергии исходных и конечных продуктов — определяет направление химической реакции. Разумеется, мы говорим только о правильно выполненных расчетах…
Однако в биохимической литературе нередко можно встретить и обратные примеры (на этот раз речь идет о реакциях). Даже в нашем сочинении, хоть его и нельзя назвать биохимическим (впрочем, авторы и сами понимают: той карикатуре на молекулярную биологию, которая лежит сейчас перед читателем, попросту нет названия), была приведена, например, реакция образования пептидной связи между парой аминокислот — важнейшая реакция синтеза белков — и записана она была в виде:
А между тем расчет показывает, что предлагаемая реакция самопроизвольно должна идти в обратном направлении. Но ведь реакция синтеза пептидной цепочки протекает в каждом организме, и вполне убедительное подтверждение тому уже хотя бы одно только наше с вами существование. В чем же дело?
Здесь нет никакого парадокса; просто приведенная выше форма записи реакции — сокращенная, показывающая лишь существенную ее часть, — в известной мере условна. Более полная (хотя все еще весьма лаконичная и схематическая ее запись) приобретает вид:
Третий компонент, появившийся в левой части уравнения, — это аденозинтрифосфат (АТФ) — универсальное биологическое «горючее», поставляющее энергию (в виде «богатых» энергией валентных связей) для тех реакций, осуществление которых самопроизвольно невозможно. В рассматриваемом случае молекула АТФ расщепляется, причем для реализации этой реакции используется молекула воды, освобождающаяся при синтезе пептидной связи. В результате суммарный энергетический эффект всех перестроек обеспечит течение реакции в целом в направлении слева направо, то есть в направлении синтеза пептидной связи.
Следовательно, две аминокислоты, «стремящиеся» объединиться, не могут сделать это непосредственно — им необходим «посредник». Такая ситуация, вообще говоря, довольно характерна для биохимических реакций (а также для обмена квартир, где «посредник» в лице бюро обмена играет, пожалуй, еще более существенную роль). Ясно, однако, что она весьма значительно усложняет течение реакции — последовательность промежуточных превращений, приводящую к требуемому результату. И «разобраться» во всех этих сложностях и нюансах биохимической реакции, «свести друг с другом» нужные молекулы в нужный момент, способны лишь ферменты.
Самый простой способ стать мастером спортаСнова (в который раз!) авторам приходится начинать новый раздел с извинений перед читателем. И поделом: мало того, что обещанное объяснение таинственных свойств ферментов то и дело прерывается обширными и не слишком интересными отступлениями на разные побочные темы, последнее «бухгалтерское» отступление оказалось оборванным на полуслове. Нельзя, правда, сказать, что оно было совсем уже бесполезным: теперь мы знаем, что вопрос о принципиальной возможности осуществления той или иной химической реакции решается сопоставлением энергии исходной и конечной системы молекул. Если процесс перехода «исходные вещества → продукты реакции» сопровождается понижением энергии, реакция возможна, если нет, то нет.
Но ведь, обольщая доверчивого читателя различными загадочными намеками, авторы посулили объяснить вовсе не это: речь шла о том, как удается ферментам достичь необычайно высокой «производительности» ферментативных реакций, или, иными словами, речь шла о скоростях реакций. А вот как раз на эту тему пока ничего и не говорилось. И напрасно, ибо, как прекрасно знают химики, даже при условии равенства разности энергий начального и конечного состояний, разные реакции могут весьма существенно отличаться по скорости течения. Стало быть, скорость реакции не зависит от ее направления, от разности энергий конечного и начального состояния системы молекул. А от чего же зависит?
Скорость реакции зависит от способа перестройки исходных продуктов в конечные, или, как говорят, от механизма реакции. Ведь на «разборку» атомов — деталей нашего «молекулярного конструктора» — нужно, как мы уже знаем, затратить определенную энергию. И, хоть впоследствии, при «сборке», она будет с лихвой компенсирована, в начале процесса реакции взять ее неоткуда, так что энергия эта должна поступить в систему реагирующих молекул извне, из окружения. Именно от этого первоначального энергетического «взноса» — его называют «энергией активации реакции» — и зависит скорость реакции. А размер первоначального «взноса» как раз и определяется способом перестройки молекул, принимающих участие в реакции.
Возьмем хотя бы описанную уже нами реакцию окисления метилового спирта. Если попытаться, скажем, провести полную «разборку» молекул метилового спирта и кислорода с тем, чтобы потом «собрать» из отдельных атомов молекулы муравьиного альдегида и воды, то, как убеждают наши расчеты, она потребует довольно значительных затрат энергии — более тысячи килокалорий на моль. Где же взять такую «чертову пропасть калорий»? (Выражение, заимствованное нами у известного американского ученого и юмориста, профессора геологии Г. Маккинстри.) В отсутствие специальных воздействий надеяться остается лишь на случайный тепловой толчок, однако, даже учитывая возможность упоминаемых в третьей главе «молекулярных чудес», ждать толчка такой большой силы (при комнатных температурах) придется уж очень долго. Во всяком случае, можно смело утверждать, что с тех пор, как земная кора остыла до температур менее сотни градусов, ни одной молекуле метилового спирта, находящейся в поверхностных слоях Земли, не удалось окислиться по рассмотренному только что механизму — с помощью полной «разборки» на атомы, — ибо энергия активации такой «реакции» непомерно высока.