Роберт Бертон - Чувства животных
Согласно классической теории, каждый омматидий может улавливать только лучи, параллельные его оси; острота зрения насекомого, по этой теории, определяется величиной угла между осями соседних омматидиев. Результаты современных исследований показывают, что отдельный омматидий способен различать световые лучи, падающие на него под разными углами; следовательно, глаз насекомого обладает большей остротой зрения, чем полагали раньше.
Существование мозаичного изображения впервые убедительно доказал немецкий ученый Экснер, который сфотографировал окно сквозь фасеточный глаз светляка, помещенный на предметное стекло микроскопа. На фотографии было видно расплывчатое изображение оконного переплета, а за ним — неясные очертания собора. Позднее определили остроту зрения сложного глаза насекомых. Полученная величина давала основание считать, что этот глаз способен различать два источника света лишь в том случае, если идущие от них лучи попадают в два соседних омматидия. При этом полагали, что свет проникает в омматидий только тогда, когда распространяется практически параллельно оси омматидия.
К несчастью для классической теории мозаичного зрения, эти эксперименты показали, что ценность метода условных рефлексов при исследовании органов чувств весьма ограниченна. Позднее, когда была разработана методика регистрации с помощью микроэлектродов нервных импульсов, возникающих в отдельных омматидиях, исследователям стало ясно, что омматидий представляет собой нечто более сложное, чем простую трубочку. Электрофизиологические эксперименты показали, что «сектор обзора», в пределах которого каждый омматидий чувствителен к световым лучам, составляет 20…30°, а не 2…3°, как утверждала классическая теория (фиг. 21, Б). В то же время омматидий способен различать два луча, идущих под углом 1/3° друг к другу, тогда как из классической теории следовало, что глаза насекомых способны различать два луча, если угол между ними составляет не менее одного градуса, т. е. если каждый луч возбуждает отдельный омматидий. Итак, омматидий получает свет от большей области окружающего пространства, чем предполагали раньше, а сложный глаз обладает большей остротой зрения. Это означает, что каждый омматидий «видит» какое-то изображение, а не просто отличает свет от темноты.
Более того, поля зрения соседних плотно прилегающих друг к другу омматидиев должны перекрываться. Таким образом, классическая теория оказывается несостоятельной; новая же теория, которой предстоит занять ее место, пока что создается довольно медленно. Отчасти это объясняется тем, что создание новых методов и освоение полученной с их помощью поистине необозримой информации требует много времени. Изучая отдельные аспекты функционирования сложного глаза, исследователи обнаруживают все новые тайны, для исследования которых необходимы новые методы.
Более тщательно изучены теперь и вспомогательные структуры сложного глаза. Каждый омматидий собирает информацию от сравнительно большого участка окружающей среды, и отдельное светящееся пятно воспринимается сразу несколькими омматидиями. Таким образом, информация, получаемая соседними омматидиями, в значительной степени перекрывается. Отсюда следует, что клетки ретинулы получают невероятно сложную и запутанную информацию, которая должна быть рассортирована и закодирована в густой сети нервных волокон, расположенных позади ретинальных клеток. Именно эту нервную сеть нужно исследовать, чтобы разгадать секреты зрения насекомых. Весьма возможно, что в результате таких исследований будет обнаружен некий механизм, сортирующий и кодирующий информацию, подобный механизму, который имеется в улитке уха человека, где поступающая в кортиев орган сложная совокупность колебаний преобразуется в закодированное сообщение, состоящее из нервных импульсов.
Между тем остается открытым вопрос: почему в опытах с условными рефлексами, подтвердивших классическую теорию, были получены столь заниженные данные об остроте зрения насекомых? Считалось, что насекомое может различать два источника света лишь в том случае, если угловое расстояние между ними не меньше 1…2°, тогда как позднее с помощью микроэлектродов было показано, что сложный глаз способен различить источники света, расположенные в 10 раз ближе друг к другу. Таким образом, оптическая система и нервные волокна сложного глаза имеют достаточно хорошую разрешающую способность, и вполне вероятно, что возможности зрения насекомых ограничивает центральная нервная система. Быть может, насекомые не могли различать два близко расположенных источника света по той же самой причине, по которой лягушки не могли увидеть мертвых мух: изображение этих мух возникало на сетчатке, но лягушки не «приспособлены» к тому, чтобы на него реагировать (см. гл. 5). И действительно, поведение некоторых насекомых свидетельствует о том, что они обладают исключительно высокой остротой зрения и могут различать мельчайшие детали.
Существует несколько видов ос, которые в отличие от своих общественных собратьев ведут одиночный образ жизни. Эти осы — отличные охотники; они ловко схватывают и жалят свою жертву, а затем складывают добычу в норках, чтобы обеспечить пищей молодое поколение. Некоторые охотящиеся осы-одиночки ловят пауков и пронзают их жалом, прежде чем те успеют нанести ответный удар своими ядовитыми «зубами» — хелицерами; осы другого вида нападают на пчел, возвращающихся в улей. Характерной особенностью всех охотящихся ос является то, что каждый их вид нападает на каких-то определенных животных, инстинктивно предпочитая всем другим определенные виды пауков, мух, пчел, жуков или каких-нибудь других мелких животных. Отсюда естественно вытекает вывод: раз уж они нападают на насекомых только одного определенного вида, значит, они способны распознать свою жертву.
Наблюдать за охотой ос очень легко. В Англии встречаются два вида так называемых роющих ос, которые строят гнезда в песке. Одни из них — полевые бембексы — охотятся на насекомых, собирающихся на коровьем помете, а другие — носатые бембексы (Bembex rostratus) — устраивают засады в соцветиях дикой моркови, купыря и других растений, над которыми носятся тучи мух. Завидев свою жертву, оса подкрадывается к ней и затем, когда до мухи остается всего лишь несколько сантиметров, бросается на нее. Поведение роющих ос во время охоты было предметом очень многих тщательнейших наблюдений, и никто ни разу не видел, чтобы осы пытались напасть на каких-либо других насекомых или приносили в свои гнезда не мух, а насекомых другого вида. Естественно предположить, что осы должны обладать исключительно хорошим зрением; однако это не все. Среди мух, часто встречающихся на белых цветках дикой моркови и подобных ей растений, нередко можно обнаружить журчалок, у которых такое же полосатое брюшко, как у пчел и ос. Всегда считалось, что такая окраска приносит этим безобидным мухам определенную пользу, так как хищники принимают их за жалящих насекомых. Однако бембексы не дают сбить себя с толку: они ловят журчалок и не трогают пчел и ос. Это еще раз свидетельствует о том, что осы прекрасно «узнают» интересующие их объекты.
Все эти наблюдения над роющими осами в естественной обстановке подтверждают результаты лабораторных исследований, показавших, что сложные глаза насекомых намного чувствительнее, чем считалось раньше. К сожалению, пока еще невозможно дать исчерпывающее описание физиологического механизма функционирования сложного глаза. Вероятно, пройдут годы, прежде чем долгий и кропотливый труд исследователей приведет к созданию новой теории; этой последней, по-видимому, будет недоставать простоты мозаичной теории, делавшей сложный глаз столь подходящим объектом для популярных лекций по биологии.
Не у всех насекомых такое же хорошее зрение, как у роющих ос или стрекоз. У многих глаза состоят всего из нескольких омматидиев и могут лишь отличать свет от темноты или воспринимать простейшие геометрические формы; в качестве примера приведем гусениц бабочек-совок, обитающих на юге Англии и ведущих ночной образ жизни. Эти гусеницы живут на деревьях, питаясь листвой дубов, яблонь или хвоей сосен. Иногда они падают с веток и, если это случается, сразу же направляются к дереву и вновь взбираются вверх по его стволу. Не торопитесь, однако, делать поспешные выводы о высоких умственных способностях этих гусениц, которые якобы знают, куда им следует ползти: если вы стоите поблизости, наблюдая за ними, они с той же вероятностью устремятся к вашим ногам и начнут карабкаться вверх. Они будут взбираться вверх и по палке, воткнутой в землю. Возвращением гусениц к пище управляет очень простой физиологический механизм, который при обычном течении событий является вполне адекватным. Каждый глаз гусеницы представляет собой группу из 6 отделенных друг от друга омматидиев, называемых стеммами. Конечно, такие глаза не могут сформировать удовлетворительное изображение окружающего гусеницу мира, однако они способны очень хорошо различать вертикальные края предметов. Когда гусеница поворачивает голову из стороны в сторону, граница светлого и темного, образуемая вертикальным краем предмета, перемещается в поле зрения стемматов, стимулируя их один за другим. Чем шире объект, тем большее воздействие оказывает он на гусеницу; поэтому она ползет к ближайшему дереву, а не растрачивает попусту свои силы на то, чтобы добраться до более отдаленного; кроме того, она предпочитает взбираться на толстые деревья, а не на тонкие палки.