Айзек Азимов - Человеческий мозг. От аксона до нейрона.
Но в этом случае неизбежно возникает вопрос: что особенного делает инсулин в клетке, отчего повышается проницаемость ее мембраны для глюкозы? Биохимики потратили много усилий для расшифровки строения молекулы инсулина именно в надежде (отчасти, правда, из элементарного любопытства) понять механизм его действия.
Молекула инсулина представляет собой полипептид, подобный молекулам желудочно-кишечных гормонов, но более сложный. Например, молекула секретина состоит из 36 аминокислотных остатков, а молекула инсулина — из 50. Поскольку, однако, структура секретина до сих пор точно не установлена, резонно предположить, что точное строение молекулы инсулина тоже пока не известно. Но надо учесть, что стремление разрешить проблему в случае инсулина, недостаток которого лежит в основе самой серьезной метаболической болезни, намного превышает стремление установить структуру гастроинтестинальных гормонов, которые не имеют такого клинического значения. Кроме того, инсулин доступен для биохимических исследований в гораздо больших количествах.
В конце 40-х годов было установлено, что молекулярный вес инсулина немногим меньше 6000. (Молекулы инсулина имеют склонность объединяться в группы, поэтому в некоторых ранних сообщениях указывалось, что его молекулярный вес равен 12 и даже 36 тысячам дальтон.) Далее, было установлено, что молекулы инсулина состоят из двух аминокислотных цепей, соединенных между собой цистшювыми мостиками. Когда цепи были разделены, выяснилось, что одна из них (цепь А) состоит из 21, а другая (цепь В) из 30 аминокислотных остатков.
Полипептидные цепи были легко расщеплены на индивидуальные аминокислоты, и биохимики установили, из каких именно аминокислот состоит каждая из цепей. (Определение аминокислотного состава было выполнено методом, который называется бумажной хроматографией. Метод был изобретен в 1944 году и произвел подлинную революцию в биохимии. Если вас интересуют подробности этого метода, то вы можете найти их в главе «Победа на бумаге» моей книги «Всего триллион», вышедшей в 1957 году.) Но, как я уже заметил в предыдущей главе, знание аминокислотного состава — это лишь первый шаг. Надо также знать последовательность, в какой расположены в цепи белка аминокислотные остатки. Двадцать одну аминокислоту в цепи А инсулина можно расположить 2 800 000 000 000 000 способами. Для 30 аминокислотных остатков цепи. В это число еще больше и равно приблизительно 510 000 000 000 000 000 000 000 000.
Проблему определения точной последовательности аминокислот в бычьем инсулине взялась решать группа биохимиков под руководством британского ученого Фредерика Сенджера. Для этого использовали метод расщепления цепей на мелкие фрагменты под действием кислот или специфических ферментов. Полученные фрагменты не были аминокислотами, а представляли собой короткие цепи из двух, трех или четырех аминокислотных остатков… Эти фрагменты были выделены, и ученые определили в них точную последовательность аминокислот.
(Две аминокислоты могут быть расположены двумя способами — А-В или В-А. Три аминокислоты могут быть расположены шестью способами — А-В-С, А-С-В, В-С-А, В-А-С, С-А-В и С-В-А. Даже четыре аминокислоты можно расположить всего лишь двадцатью четырьмя способами. Можно проанализировать все возможные последовательности в малых фрагментах и выбрать правильный, не столкнувшись с непреодолимыми трудностями. По крайней мере, гораздо легче иметь дело с двумя возможностями из пары десятков, чем с двумя из пары квинтильонов возможных вариантов.)
Когда, таким образом, были обработаны все малые фрагменты, наступило время собрать их воедино. Предположим, что цепь А имеет в своем составе некую аминокислоту, которую мы обозначим q,в единственном числе. Предположим далее, что нам удалось выделить две короткие цепочки по три аминокислоты в каждом — r- s- qи q- p- o.Поскольку в цепи аминокислота qприсутствует только в одном экземпляре, то в исходной молекуле должна присутствовать последовательность из пяти аминокислотных остатков r- s- q- p- o.Тогда, в зависимости от места расщепления исходной цепи, действительно получится два возможных фрагмента — r- s- qи q- p- o.
Для решения этой головоломки Сэнджеру и его коллегам потребовалось восемь лет. К 1955 году им удалось подогнать друг к другу полученные фрагменты и получить структуру нативной белковой молекулы. В истории науки это был первый случай, когда ученым удалось полностью определить структуру естественной белковой молекулы. В 1958 году Сэнджер был удостоен Нобелевской премии по химии.
Формула молекулы инсулина в записи символами Бранда выглядит следующим образом:
Бычий инсулин
К сожалению, знание структуры молекулы ни на йоту не приблизило биохимиков к пониманию механизма действия инсулина на клеточные мембраны.
Представлялось возможным подойти к проблеме с другого конца и попытаться сравнить структуру инсулинов разных видов животных. Свиной инсулин так же эффективен у диабетиков, как и бычий. Если два инсулина отличаются своим строением, то, видимо, следует обратить пристальное внимание лишь па тот участок молекулы, который обеспечивает общие свойства, сузив тем самым поле поиска. Когда был проанализирован свиной инсулин, выяснилось, что он отличается от бычьего тремя аминокислотными остатками, выделенными в приведенной формуле курсивом. Эти три аминокислоты, если можно так выразиться, зажаты в углу между двумя цистиновыми мостиками.
В бычьем инсулине в этом месте находятся ала-нин-серин-валин, а в свином — треонин-серин-изо-лейцин. Состав этого и только этого участка варьирует у других видов животных. У овец в данном участке находятся аланин-глицин-валин, у лошадей — треонин-глицин-изолейнин, а у китов — треонин-серин-изолейцин. У этих трех видов аминокислота слева может быть аланином или треонином, в середине — серином или глицином, и справа — валином или изолейцином.
Хотя аминокислотный состав инсулина множества других видов животных пока не определен, представляется маловероятным, что отличия окажутся разительными. Более того, любые изменения химической структуры, кроме самых незначительных, приводит к утрате биологической активности молекулы инсулина. Каким бы ни было действие, оказываемое инсулином на клеточную мембрану, для его осуществления требуется участие целой интактной молекулы. Это почти все, что можно на сегодняшний день об этом сказать, по крайней мере пока.
.
ГЛЮКАГОНЕсли есть гормон, проявляющий какое-то однонаправленное действие, как, например, инсулин, вызывающий снижение содержания глюкозы в крови, то разумно предположить, что может существовать гормон, вызывающий противоположный эффект. Это не простое ослабление действия первого гормона, а именно противоположный эффект, с помощью которого можно топко и точно регулировать концентрацию сахара в крови, сдвигая его содержание в ту или другую сторону. Вы сами можете убедиться в этом, если представите себе качающуюся лестницу, которую надо установить в устойчивое положение. Это очень удобно сделать двумя руками, надавливая на лестницу с обеих сторон в противоположных направлениях.
Такой гормон-антагонист действительно существует, и синтезируется он все в тех же островках Лангерганса. Об этом гормоне мало кто знает, потому что с ним не связаны какие-либо распространенные заболевания, сравнимые по значению с сахарным диабетом.
Островки Лангерганса содержат две разновидности клеток — альфа-клетки и бета-клетки. (Ученые часто, пожалуй даже слишком часто, идут по пути наименьшего сопротивления, различая однородные элементы присвоением им первых нескольких букв греческого алфавита.) Альфа-клетки крупнее и расположены на периферии островков, составляя около 25 % его клеточной массы. В центре островков расположены более мелкие бета-клетки. В бета-клетках синтезируется инсулин, альфа-клетки продуцируют гормон спротивоположным действием.
Этот второй гормон был обнаружен вскоре после открытия Бантингом инсулина. Выяснилось, что иногда при введении инсулина вначале отмечался подъем содержания глюкозы в крови, а потом начиналось ожидаемое снижение ее концентрации. Надо было, следовательно, найти вещество, проявлявший нежелательный эффект. Таким образом, был найден гормон, ускорявший расщепление гликогена в печени. Гликоген расщепляется до глюкозы, которая поступает в кровеносное русло. В результате и происходит повышение концентрации глюкозы в крови.
Когда присутствие гормона подтверждается только его аффектом, то его во многих случаях и называют по этому эффекту. Новый гормон из этих соображений был назван гипергликемическим гликогенолитическим фактором, что в переводе с греческого означает «повышающий содержание глюкозы в крови и расщепляющий гликоген». Так как биохимики тоже люди и не любят длинных слов, то вновь открытый фактор стали называть ГГФ, а недавно придумали более короткое наименование — глюкагон, которое и стало общеупотребительным.