Kniga-Online.club
» » » » Сергей Суматохин - Нанобиотехнологии: становление, современное состояние и практическое значение

Сергей Суматохин - Нанобиотехнологии: становление, современное состояние и практическое значение

Читать бесплатно Сергей Суматохин - Нанобиотехнологии: становление, современное состояние и практическое значение. Жанр: Биология издательство неизвестно, год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Название:
Нанобиотехнологии: становление, современное состояние и практическое значение
Издательство:
неизвестно
ISBN:
нет данных
Год:
-
Дата добавления:
15 февраль 2019
Количество просмотров:
263
Возрастные ограничения:
(18+) Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних просмотр данного контента СТРОГО ЗАПРЕЩЕН! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту для удаления материала.
Читать онлайн
Сергей Суматохин - Нанобиотехнологии: становление, современное состояние и практическое значение
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего согласия.
Напишите нам, и мы в срочном порядке примем меры.

Сергей Суматохин - Нанобиотехнологии: становление, современное состояние и практическое значение краткое содержание

Сергей Суматохин - Нанобиотехнологии: становление, современное состояние и практическое значение - описание и краткое содержание, автор Сергей Суматохин, читайте бесплатно онлайн на сайте электронной библиотеки kniga-online.club
Сергей Витальевич Суматохиндоктор педагогических наук, профессор, заведующий кафедрой методики преподавания биологии и общей биологии химико–биологического факультета Московского городского педагогического университета

Нанобиотехнологии: становление, современное состояние и практическое значение читать онлайн бесплатно

Нанобиотехнологии: становление, современное состояние и практическое значение - читать книгу онлайн, автор Сергей Суматохин
Назад 1 2 3 4 5 ... 7 Вперед
Перейти на страницу:

Сергей Витальевич Суматохин

НАНОБИОТЕХНОЛОГИИ: СТАНОВЛЕНИЕ, СОВРЕМЕННОЕ СОСТОЯНИЕ И ПРАКТИЧЕСКОЕ ЗНАЧЕНИЕ

В 1974 г. на Международной конференции по промышленному производству профессор Токийского университета Норио Танигучи ввел в научный оборот термин «нанотехнология» (от греч. «нанос» — карлик, «техне» — мастерство, «логос» — учение).

СТАНОВЛЕНИЕ НАНОБИОТЕХНОЛОГИИ

В понимании Норио Танигучи нанотехнология — это «технология производства, позволяющая достигать сверхвысокой точности и ультрамалых размеров… порядка 1 нм». Чтобы наглядно представить такой размер, достаточно знать, что 1 нанометр — это примерно длина 10 положенных рядом атомов водорода. В настоящее время под нанотехнологиями понимают конструирование наночастиц (наноструктур), размер которых хотя бы в одном направлении составляет от 1 до 100 нанометров.

Наноструктуры не просто меньше всего, что создавал человек, они являются наименьшими твердыми материалами, которые можно произвести (выделить) и с которыми можно осуществить манипуляции. Наномасштаб уникален, поскольку фундаментальные свойства элементов наномира зависят от их размера в такой степени, в какой не зависят ни при одном другом масштабе. На молекулярном уровне возникают новые физические и химические свойства, определяемые поведением атомов, молекул и нанокомплексов.

К биологическим наноструктурам можно отнести молекулы белков. Их размеры варьируются в пределах от 4 до 50 нм. Размеры строительных блоков белков — аминокислот — составляют около 1 нм. Молекула ДНК, имеющая толщину 1–2 нм, несомненно, является наноструктурой, несмотря на то, что ее длина достигает нескольких миллиметров. Из живых существ к наномиру можно отнести неклеточные формы жизни — вирусы. Их размеры составляют от 10 до 200 нм.

Процессы, в которые вовлекаются наноструктуры (наночастицы), получили название нанопроцессов. Самый главный нанопроцесс в живом организме — биосинтез белка. Явления живой природы, протекающие с участием наноструктур, названы наноявлениями.

Самоочищение листьев лотоса, который на Востоке считается символом чистоты, можно отнести к наноявлениям. Листья лотоса покрыты микробугорками высотой 5–10 мкм, от которых отрастают нановолоски. Благодаря последним, капли дождя не растекаются, а скатываются по поверхности листа, увлекая за собой частицы грязи и очищая листья растения.

Гораздо более древним наноявлением можно считать самовоспроизводство (ауторепликацию) ДНК. Это чрезвычайно сложное явление характеризовало уже первые прокариотические организмы Земли — бактерии, возникшие около 3,5 млрд лет тому назад.

Конструирование наноразмерных структур позволяет придавать уже известным веществам новые свойства или усиливать их действие. На этапе становления нанотехнологий инженерам и ученым был необходим новый метод визуализации с нанометровой разрешающей способностью, позволяющей видеть наночастицы, изучать их характеристики.

Технология сканирующей туннельной микроскопии

В 1981 г. швейцарец Герд Бинниг и немец Генрих Рорер разработали технологию сканирующей туннельной микроскопии (СТМ), позволявшую ученым визуализировать атомы. В 1982 г. Бинниг и Рорер представили модель первого типа сканирующих зондовых микроскопов — сканирующего туннельного микроскопа. За эту работу они в 1986 г. были удостоены Нобелевской премии по физике.

В сканирующем туннельном микроскопе зондом служит чрезвычайно острая металлическая игла. Если проводить аналогию с оптическим зондовым микроскопом, то в туннельном микроскопе функцию отверстия зонда выполняет острие иглы. Из него вместо света «провисают» квантовомеханические волны электронов, содержащихся в металле острия. Длина таких электронных волн примерно в тысячу раз меньше световой. Поэтому они «освещают» площадку в тысячу раз меньшего размера, чем оптический зонд. Когда электронная волна касается исследуемой проводящей поверхности (это происходит при расстоянии между зондом и поверхностью около 1 нм), электрон с острия может «перепрыгнуть» на поверхность, иначе говоря, туннелировать.

Туннелирование означает появление электрического тока в цепи зонд — поверхность. Правда, тока очень слабого — в миллиардные доли ампера, но усиление его средствами современной электроники проблемы не представляет. Туннельный ток сильно зависит от расстояния между острием и поверхностью. Уменьшение расстояния на пару ангстрем, т. е. примерно на размер атома, увеличивает туннельный ток в тысячу раз.

Технология СТМ позволила не только изучать структуру атомов, но и измерять электрическое или магнитное поля молекул или атомов. Разработка СТМ способствовала прогрессу в исследованиях полупроводниковых и металлических материалов.

С помощью сканирующей туннельной микроскопии были исследованы углеродные нанотрубки — крошечные цилиндры диаметром 0,5–10 нм и длиной примерно 1 мкм, которые являются особой кристаллической формой углерода. Углеродные нанотрубки стали новым материалом.

На основе углеродных нанотрубок разработан новый вид искусственных мышц. Несмотря на то, что размер нанотрубок в 10 тыс. раз меньше толщины человеческого волоса, они способны поднимать вес в 100 ООО раз превосходящий их собственный, а это означает силу, примерно в 85 раз превышающую максимальные возможности натуральных мышц соответствующего размера. Искусственные мышцы созданы из углерода и парафина соответствующего размера. Главный недостаток сканирующей туннельной микроскопии — возможность исследования только проводящих образцов и невозможность работы в жидкостях, что часто исключает работу с биологическими объектами.

Атомно–силовая микроскопия

В 1986 г. Генрих Рорер разработал первый атомно–силовой микроскоп — продолжатель рода сканирующих зондовых микроскопов. Благодаря разработке метода атомно–силовой микроскопии (АСМ) ученые смогли перенести на субнанометровый уровень исследования биологических объектов.

В основе работы атомно–силового микроскопа лежит использование разных видов силового взаимодействия зонда с поверхностью изучаемого образца. При этом микроскоп позволяет изучать образцы не только в воздушной среде, но и в жидкой. Особое преимущество атомно–силовой микроскопии — ее способность получать трехмерное изображение на уровне отдельных атомов и молекул.

Метод атомно–силовой микроскопии нашел применение в биохимии и молекулярной биологии во всем диапазоне размеров исследуемых объектов — от целых бактерий и клеток различных живых организмов до отдельных белковых молекул. Задачи, решаемые методом атомно–силовой микроскопии в этом диапазоне размеров, чрезвычайно разнообразны: идентификация микроорганизмов по их морфологии, исследование влияния различных веществ на жизнедеятельность клеток, визуализация и контроль образования фермент–субстратных комплексов, контроль размеров, структуры и стабильности различных наноструктур, использующихся для доставки лекарственных средств, визуализация единичных биомолекул и многое другое. Гибкость методик атомно–силовой микроскопии позволяет ученым шире применять их в биохимии, молекулярной биологии и биотехнологии.

Конструирование наноструктур на основе белков

Биологический мир буквально наполнен биологическими нанообъектами, имеющими линейные размеры 1–100 нм по крайней мере в одном измерении. К ним относят молекулы белков, ДНК, РНК и полисахаридов, которые формируют внутриклеточный каркас (цитоскелет) и внеклеточный матрикс, мембранные каналы, систему внутриклеточной сигнализации, молекулярные

машины для синтеза, упаковки и утилизации белков и нуклеиновых кислот, производства энергии, внутриклеточного транспорта и движения клеток.

Внеклеточные структуры также могут иметь наноразмерные характеристики. Так, экзосомы и везикулы, переносящие материал между клетками, имеют диаметр 65–100 нм. Частицы липопротеинов плазмы крови, транспортирующие липиды в организме, составляют 8–50 нм.

Биологические наноструктуры, образуемые на основе белка, называют белковыми наноструктурами. Они очень разнообразны по размерам и трехмерной структуре. Разнообразие белковых наноструктур обусловлено: большим количеством аминокислотных остатков в молекуле полипептида (от нескольких десятков до нескольких сотен); способностью каждого из аминокислотных остатков приобретать около 10 пространственных конфигураций и вступать в разнообразные связи с другими молекулами белка.

Назад 1 2 3 4 5 ... 7 Вперед
Перейти на страницу:

Сергей Суматохин читать все книги автора по порядку

Сергей Суматохин - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


Нанобиотехнологии: становление, современное состояние и практическое значение отзывы

Отзывы читателей о книге Нанобиотехнологии: становление, современное состояние и практическое значение, автор: Сергей Суматохин. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*