Е. Козлова - Общая биология
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Е. Козлова - Общая биология краткое содержание
Общая биология читать онлайн бесплатно
Наталья Сергеевна Курбатова,Е. А. Козлова
Общая биология
1. История развития клеточной теории
Предпосылками создания клеточной теории были изобретение и усовершенствование микроскопа и открытие клеток (1665 г., Р. Гук – при изучении среза коры пробкового дерева, бузины и др.). Работы известных микроскопистов: М. Мальпиги, Н. Грю, А. ван Левенгука – позволили увидеть клетки растительных организмов. А. ван Левенгук обнаружил в водеоднокле-точные организмы. Сначала изучалось клеточное ядро. Р. Браун описал ядро растительной клетки. Я. Э. Пуркине ввел понятие протоплазмы – жидкого студенистого клеточного содержимого.
Немецкий ботаник М. Шлейден первым пришел к выводу, что в любой клетке есть ядро. Основателем КТ считается немецкий биолог Т. Шванн (совместно с М. Шлейденом), который в 1839 г. опубликовал труд «Микроскопические исследования о соответствии в структуре и росте животных и растений». Его положения:
1) клетка – главная структурная единица всех живых организмов (как животных, так и растительных);
2) если в каком-либо образовании, видимом под микроскопом, есть ядро, то его можно считать клеткой;
3) процесс образования новых клеток обусловливает рост, развитие, дифференцировку растительных и животных клеток.
Дополнения в клеточную теорию внес немецкий ученый Р. Вирхов, который в 1858 г. опубликовал свой труд «Целлюлярная патология». Он доказал, что дочерние клетки образуются путем деления материнских клеток: каждая клетка из клетки. В конце XIX в. были обнаружены митохондрии, комплекс Гольджи, пластиды в растительных клетках. После окрашивания делящихся клеток специальными красителями были обнаружены хромосомы. Современные положения КТ
1. Клетка – основная единица строения и развития всех живых организмов, является наименьшей структурной единицей живого.
2. Клетки всех организмов (как одно-, так и многоклеточных) сходны по химическому составу, строению, основным проявлениям обмена веществ и жизнедеятельности.
3. Размножение клеток происходит путем их деления (каждая новая клетка образуется при делении материнской клетки); в сложных многоклеточных организмах клетки имеют различные формы и специализированы в соответствии с выполняемыми функциями. Сходные клетки образуют ткани; из тканей состоят органы, которые образуют системы органов, они тесно взаимосвязаны и подчинены нервным и гуморальным механизмам регуляции (у высших организмов).
Значение клеточной теории
Отало ясно, что клетка – важнейшая составляющая часть живых организмов, их главный морфофизиоло-гический компонент. Клетка – это основа многоклеточного организма, место протекания биохимических и физиологических процессов в организме. На клеточном уровне в конечном итоге происходят все биологические процессы. Клеточная теория позволила сделать вывод о сходстве химического состава всех клеток, общем плане их строения, что подтверждает филогенетическое единство всего живого мира.
2. Жизнь. Свойства живой материи
Жизнь – это макромолекулярная открытая система, которой свойственны иерархическая организация, способность к самовоспроизведению, самосохранению и саморегуляции, обмен веществ, тонко регулируемый поток энергии.
Свойства живых структур:
1) самообновление. Основу обмена веществ составляют сбалансированные и четко взаимосвязанные процессы ассимиляции (анаболизм, синтез, образование новых веществ) и диссимиляции (катаболизм, распад);
2) самовоспроизведение. В связи с этим живые структуры постоянно воспроизводятся и обновляются, не теряя при этом сходства с предыдущими поколениями. Нуклеиновые кислоты способны хранить, передавать и воспроизводить наследственную информацию, а также реализовывать ее через синтез белков. Информация, хранимая на ДНК, переносится на молекулу белка с помощью молекул РНК;
3) саморегуляция. Базируется на совокупности потоков вещества, энергии и информации через живой организм;
4) раздражимость. Связана с передачей информации извне в любую биологическую систему и отражает реакцию этой системы на внешний раздражитель. Благодаря раздражимости живые организмы способны избирательно реагировать на условия внешней среды и извлекать из нее только необходимое для своего существования;
5) поддержание гомеостаза – относительного динамического постоянства внутренней среды организма, физико-химических параметров существования системы;
6) структурная организация – упорядоченность, живой системы, обнаруживается при исследовании – биогеоценозов;
7) адаптация – способность живого организма постоянно приспосабливаться к изменяющимся условиям существования в окружающей среде;
8) репродукция (воспроизведение). Так как жизнь существует в виде отдельных живых системы, а существование каждой такой системы строго ограничено во времени, поддержание жизни на Земле связано с репродукцией живых систем;
9) наследственность. Обеспечивает преемственность между поколениями организмов (на основе потоков информации). Благодаря наследственности из поколения в поколение передаются признаки, которые обеспечивают приспособление к среде обитания;
10) изменчивость – за счет изменчивости живая система приобретает признаки, ранее ей несвойственные. В первую очередьизменчивостьсвязанасошиб-ками при репродукции: изменения в структуре нуклеиновых кислот приводят к появлению новой наследственной информации;
11) индивидуальное развитие (процесс онтогенеза) – воплощение исходной генетической информации, заложенной в структуре молекул ДНК, в рабочие структуры организма. В ходе этого процесса проявляется такое свойство, как способность к росту, что выражается в увеличении массы тела и его размеров;
12) филогенетическое развитие. Базируется на прогрессивном размножении, наследственности, борьбе за существование и отборе. В результате эволюции появилось, огромное количество видов;
13) дискретность (прерывистость) и в то же время целостность. Жизнь представлена совокупностью отдельных организмов, или особей. Каждый организм, в свою очередь, также дискретен, поскольку состоит из совокупности органов, тканей и клеток.
3. Уровни организации жизни
Живая природа – это целостная, но неоднородная система, которой свойственна иерархическая организация. Иерархической называется такая система, в которой части (или элементы целого) расположены в порядке от высшего к низшему.
Микросистемы (доорганизменная ступень) включают в себя молекулярный (молекулярно-генетиче-ский) и субклеточный уровни.
Мезосистемы (организменная ступень) включают в себя клеточный, тканевый, органный, системный, организменный (организм как единое целое), или онтогенетический, уровни.
Макросистемы (надорганизменная ступень) включают в себя популяционно-видовой, биоценотический и глобальный уровни (биосферу в целом). На каждом уровне можно выделить элементарную единицу и явление.
Элементарная единица (ЭЕ) – это структура (или объект), закономерные изменения которой (элементарные явления, ЭЯ) составляют ее вклад в развитие жизни на данном уровне.
Иерархические уровни:
1) молекулярно-генетический уровень. ЭЕ представлена геном. Ген – это участок молекулы ДНК (а у некоторых вирусов-молекулы РНК), который ответствен за формирование какого – либо одного признака;
2) субклеточный уровень. ЭЕ представлена какой-либо субклеточной структурой, т. е. органеллой, которая выполняет свойственные ей функции и вносит свой вклад в работу клетки в целом;
3) клеточный уровень. ЭЕ – это клетка, которая является самостоятельно функционирующей элементарной
биологической системой. Только на этом уровне возможны реализация генетической информации и процессы биосинтеза;
4) тканевый уровень. Совокупность клеток с одинаковым типом организации составляет ткань (ЭЕ);
5) органный уровень. Образован совместно с функционирующими клетками, относящимися к разным тканям (ЭЕ);
6) организменный (онтогенетический) уровень. ЭЕ – это особь в ее развитии от момента рождения до прекращения ее существования в качестве живой системы. ЭЯ – это закономерные изменения организма в процессе индивидуального развития (онтогенеза) фенотип;
7) популяционно-видовой уровень. ЭЕ – это популяция, т. е. совокупность особей (организмов) одного вида, населяющих одну территорию и свободно скрещивающихся между собой. Популяция обладает генофондом, т. е. совокупностью генотипов всех особей. Воздействие на генофонд элементарных эволюционных факторов приводит к эволюционно значимым изменениям (ЭЯ);
8) биоценотический (экосистемный) уровень. ЭЕ – биоценоз, т. е. исторически сложившееся устойчивое сообщество популяций разных видов, связанных между собой и с окружающей неживой природой обменом веществ, энергии и информации (круговоротами), которые и представляют собой ЭЯ;