Роберт Хайнеманн - Визуальное моделирование электронных схем в PSPICE
За пять уроков второй части вы научитесь:
• увеличивать фрагменты диаграмм, созданных в программе PROBE;
• определять точные координаты отдельных точек на диаграммах, созданных в программе-осциллографе PROBE, с помощью двух курсоров;
• математически связывать данные, полученные при моделировании, и представлять результат в виде PROBE-диаграммы;
• изменять (варьировать) какую-либо величину одной схемы (характеристики компонентов, температуру, входное напряжение, параметры модели) и представлять значения токов и напряжений в схеме, полученные на основании этих изменений, в виде кривых;
• изменять (варьировать) две величины одной схемы и представлять полученный результат в PROBE в виде нескольких кривых;
• проводить Фурье-анализ зависимых от времени величин;
• анализировать шумовые характеристики схемы;
• исследовать чувствительность схемы к разбросам параметров компонентов;
• использовать PSPICE в качестве логического анализатора для цифровых и смешанных цифро-аналоговых схем.
Условия для успешного освоения учебного материалаСтепень вашей подготовленности к изучению материала, изложенного в пяти уроках второй части данного учебного курса, напрямую зависит от того, насколько прочно вы усвоили материал первой части. Вплоть до урока 8 включительно от вас потребуются знания только электрических цепей, состоящих из резисторов, катушек и конденсаторов. Урок 9 предполагает также наличие у вас базовых познаний в электронике, а чтобы успешно освоить материал урока 10, вы должны иметь представление об основах цифровой техники.
Урок 6
Работа с программой-осциллографом PROBE
Изучив этот урок, вы научитесь выполнять наиболее важные операции в программе-осциллографе PROBE: строить и правильно располагать диаграммы, а также увеличивать их отдельные фрагменты.
В качестве небольшой демонстрации широких возможностей PROBE в этом уроке мы исследуем с вами последовательную цепь, содержащую резистор, катушку индуктивности и конденсатор. Вы научитесь развертывать диаграммы PROBE, увеличивать их отдельные фрагменты, а также определять точные значения на диаграмме с помощью двух курсоров. Кроме того, вы узнаете, как можно располагать диаграммы PROBE друг под другом, сохраняя при этом их временную соотнесенность.
Шаг 1 Начертите изображенную ниже схему электрической цепи, состоящей из последовательного соединения резистора, катушки индуктивности и конденсатора, и сохраните ее под именем RLC.sch (рис. 6.1). При частоте f=11.254 кГц эта электросхема находится в резонансе.
Рис. 6.1. Схема электрической цепи, состоящей из последовательного соединения резистора, катушки индуктивности и конденсатора
6.1. Масштабирование координатной сетки Y
Если при заданной частоте в рассматриваемой последовательной цепи наступает электрический резонанс, вы, как хороший знаток теории, естественно, ожидаете, что при этом напряжения на конденсаторе и на катушке индуктивности должны быть равны по значению и в сумме давать ноль, поскольку фазы их колебаний противоположны. Соответственно, напряжение на активном сопротивлении R1 должно быть равным полному входному напряжению.
Шаг 2 Проверьте, совпадут ли ваши ожидания с действительностью: проведите анализ переходного процесса (Transient Analysis) вашей цепи, а затем представьте графически полученные данные о полном напряжении и напряжении на активном сопротивлении. Установки: Final Time — 600 мкс, Step Ceiling — 200 нс (рис. 6.2).
Рис. 6.2. Электрическая цепь, где R1=1 кОм; полное напряжение и напряжение на активном сопротивлении R1
Как вы того и ожидали, после короткого переходного процесса полное входное напряжение находится на активном сопротивлении R1. Теория в очередной раз подтверждается. К сожалению, изображая кривые обоих напряжений, программа PROBE не использовала для этого всю рабочую поверхность экрана сверху донизу. Но вы можете внести в изображение соответствующие изменения, так как программа PROBE позволяет пользователю самому определять масштаб координатных осей.
Шаг 3 Для этого откройте в PROBE меню Plot, в котором содержатся опции, позволяющие вносить изменения в графическое отображение результатов моделирования (рис. 6.3).
Рис. 6.3. Меню Plot
Шаг 4 Выберите опцию Y Axis Settings…, после чего откроется одноименное окно, показанное на рис. 6.4.
Рис. 6.4. Окно Y Axis Settings с установками для масштабирования оси координат Y
Шаг 5 Измените изображаемый в PROBE интервал, отметив в разделе Data Range (Диапазон данных) опцию User Defined (Определяемый пользователем), при этом опция Auto Range (Автоматически выбирать диапазон) будет деактивизирована. Затем задайте диапазон значений от -1 В до 1 В. Тем самым вы приведете в соответствие изображаемый в PROBE интервал с имеющимися у вас значениями напряжений. Закройте окно Y Axis Settings, щелкнув по кнопке OK, и оцените изменения, произошедшие на вашей диаграмме. Теперь она должна выглядеть так, как это показано на рис. 6.5: изменение масштаба оси Y позволило развернуть диаграмму на весь экран.
Рис. 6.5. Электрическая цепь с развернутой на весь экран диаграммой
Теперь диаграмма отображается на экране наиболее оптимально. Для большей наглядности к кривым, представленным на рис. 6.5, в качестве нулевой линии стоит добавить потенциал точки «земли» V(0), который вы можете найти в списке диаграмм в окне Add Traces.
6.2. Применение математических к результатам моделирования
Теперь вам, естественно, хотелось бы графически представить в PROBE напряжения на катушке UL и конденсаторе UC. Но как можно отобразить эти напряжения, если PROBE рассчитывает только узловые потенциалы, то есть напряжения по отношению к «земле»? PROBE предлагает вам очень изящное решение данной проблемы. Вы наверняка помните правую часть окна Add Traces, где было перечислено целое множество математических операций. Любые из этих операций можно использовать применительно к величинам, содержащимся в левой части окна Add Traces. Такая операция, как «минус», позволяет, например, вычислить напряжение как разницу двух потенциалов.
Шаг 6 Для вычисления напряжения на конденсаторе (UL) откройте окно Add Traces и найдите в списке диаграмм названия двух необходимых узловых потенциалов.
Шаг 7 Чтобы получить разность двух потенциалов, щелкните мышью поочередно по строкам V(L1:1) и V(L1:2). Таким образом, обозначения обоих потенциалов будут один за другим отправлены в строку Trace Expression. Теперь вам остается только поставить между ними знак «минус» (рис. 6.6). Вы можете сделать это, нажав клавишу «минус» на своей клавиатуре либо щелкнув по соответствующему значку в правой части окна Add Traces.
Рис. 6.6. Окно Add Traces
Шаг 8 Подтвердите ввод в строке Trace Expression щелчком по кнопке OK и будьте готовы приятно удивиться: на экране появится тот же RLC-контур, что и на рис. 6.1. Он находится в электрическом резонансе. R1=1 кОм: полное напряжение и напряжения на активном сопротивлении R, и на катушке L1 (рис. 6.7).
Рис. 6.7. Диаграмма напряжения на катушке RLC-контура, где R1=1 кОм
Напряжение на катушке опережает ток на 90° и имеет амплитуду, соответствующую 2/3 входного напряжения. Для того чтобы вам было легче разобраться в диаграмме, напечатанной в черно-белом цвете, мы снабдили отдельные кривые специальными символами, позволяющими отличать их друг от друга. Вы помните, что эти символы можно активизировать через меню PROBE Tools→Options…→Use Symbols→Always.
Аналогично тому, как вы создали диаграмму напряжения на катушке, представьте теперь графически и напряжение на конденсаторе.
Шаг 9 Составьте в окне Add Traces выражение для определения разности потенциалов на правом и левом выводе С1 и выведите на экран PROBE диаграмму полного напряжения и напряжений на всех трех компонентах цепи (рис. 6.8). R1=1 кОм: полное напряжение и напряжения на активном сопротивлении R1, катушке L1 и конденсаторе С1.
Рис. 6.8. Диаграмма полного напряжения и напряжений на всех компонентах RLC-контура
6.3. Одновременное изображение диаграмм в отдельных системах координат
На рис. 6.8 в одной системе координат изображены четыре диаграммы. Этот метод подходит для двух или даже трех диаграмм, однако, если требуется большее количество, то ориентироваться в них становится довольно непросто. В таких случаях в электротехнике принято располагать отдельные диаграммы друг над другом, сохраняя их временную соотнесенность. Это можно сделать и в PROBE. Для того чтобы расположить четыре диаграммы, изображенные на рис. 6.8, друг над другом, каждую в своей системе координат, действуйте следующим образом.