Kniga-Online.club
» » » » Роб Кёртен - Введение в QNX/Neutrino 2. Руководство по программированию приложений реального времени в QNX Realtime Platform

Роб Кёртен - Введение в QNX/Neutrino 2. Руководство по программированию приложений реального времени в QNX Realtime Platform

Читать бесплатно Роб Кёртен - Введение в QNX/Neutrino 2. Руководство по программированию приложений реального времени в QNX Realtime Platform. Жанр: Программное обеспечение издательство -, год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

Когда сервер вызывает функцию MsgDeliverEvent() локально, ответственность за доставку события целевому потоку ложится на ядро. В сетевом варианте сервер также может вызывать функцию MsgDeliverEvent(), но на этот раз ядро доставит «заготовку» этого события администратору qnet, возлагая на него ответственность за доставку этой «заготовки» удаленному qnet, который уже доставит реальное событие клиенту. Так вот, на стороне сервера с этим вызовом могут возникнуть проблемы, потому что он не является блокирующим. Это означает, после вызова MsgDeliverEvent() сервер продолжает выполняться, и поздно уже оглядываться и говорить «Знаете, очень не хочется вас огорчать, но помните тот вызов MsgDeliverEvent()? Так вот, он не сработал...»

Воздействие на функции MsgReply(), MsgRead() и MsgWrite()

Чтобы уберечь функции MsgReply(), MsgRead() и MsgWrite() от вышеупомянутой проблемы MsgDeliverEvent(), эти функции при использовании их в сети преобразуются в блокирующие вызовы. В локальном случае они бы просто передали данные и разблокировались; в сети же мы должны либо удостовериться, что данные были доставлены клиенту (в случае MsgReply()), либо собственно передать данные по сети клиенту или от него (в случае двух других функций).

Воздействие на функцию MsgReceive()

Функция MsgReceive() (при использовании в сети) тоже оказывается под влиянием. На момент разблокирования функции MsgReceive() на стороне сервера qnet может еще не успеть передать все данные клиента. Это делается из соображений производительности.

В структуре struct _msg_infо, передаваемой функции MsgReceive() в качестве последнего параметра (мы подробно рассматривали эту структуру в параграфе «Кто послал сообщение?»), есть два флага:

msglen Указывает на фактическое количество данных, переданное функцией MsgReceive() (qnet любит передавать по 8Кб за один раз). srcmsglen Указывает на количество данных, которое клиент хотел передать (определяется клиентом).

Таким образом, если бы клиент желал передать 1 мегабайт данных по сети, MsgReceive() сервера разблокировалась бы, установив параметр msglen в значение 8192 (указывая, что 8192 байта доступны в буфере); параметр srcmsglen при этом равнялся бы 1048576 (указывая, что клиент пытался переслать 1 мегабайт данных).

Затем сервер использует MsgRead() для получения остальной части данных из адресного пространства клиента.

Несколько замечаний о дескрипторах узлов

Еще одна любопытная вещь, которой мы еще не касались в обсуждениях обмена сообщениями, — это дескрипторы узлов, для краткости обозначаемые «ND» (сокр. от Node Descriptor — прим. ред.).

Вспомните: в наших примерах мы использовали символьные имена узлов, например, /net/wintermute. В QNX4 (предыдущая версия QNX до появления QNX/Neutrino) вся работа в сети была основана на концепции идентификатора узла, небольшого целого числа, уникально определяющего узел сети. Таким образом, в терминах QNX4 мы говорили бы что-то вроде «узел 61», или «узел 1», и это отражалось бы и на вызовах функций тоже.

При работе в QNX/Neutrino все узлы внутренне представляются 32-разрядными числами, но эти числа не являются уникальными в сети! Я имею в виду, что узел wintermute может думать об узле spud как об узле с дескриптором 7, в то время как сам узел spud может думать, что дескриптор 7 соответствует узлу magenta. Поясню подробнее, чтобы дать полную картину происходящего. В приведенной ниже таблице сведены примерные дескрипторы узлов, которые могли бы использоваться для описания трех узлов: wintermute, spud и foobar (не путать с аббревиатурой FUBAR — прим. ред. :-):

Узел wintermute spud foobar wintermute 0 7 4 spud 4 0 6 foobar 5 7 0

Обратите внимание, что каждый узел считает свой собственный дескриптор нулевым. Также отметьте, что для узла spud оба узла wintermute и foobar имеют дескриптор 7. Однако, для узла foobar узел wintermute имеет дескриптор 4, а узел spud — 6. Как я и упоминал раньше, эти номера не уникальны в сети, но они уникальны на каждом узле. Вы можете относиться к ним, как к файловым дескрипторам — два процесса, когда обращаются к одному и тому же файлу, могут иметь для него как одинаковый дескриптор, так и нет — все зависит от того, кто, когда и который файл открывает.

К счастью, вам не надо беспокоиться о дескрипторах узлов по ряду причин:

• Большинство осуществляемых вами операций обмена сообщениями «с внешним миром» будут реализовываться с помощью вызовов функций высокого уровня (таких как функция open(), приведенная в примере выше).

• Дескрипторы узлов не кэшируются — предполагается, что получив дескриптор, вы используете немедленно и забудете про него.

• Существует ряд библиотечных функций, предназначенных для преобразования имени пути (например, /net/magenta) в дескриптор узла.

Чтобы работать с дескрипторами узлов, вам понадобится подключить файл <sys/netmgr.h>, потому что он содержит прототипы семейства функций netmgr_*().

Для преобразования строки в дескриптор узла используется функция netmgr_strtond(). После получения дескриптора узла его следует сразу же применить в вызове функции ConnectAttach(). Не пытайтесь сохранять его какой-либо структуре данных! Веским основанием для этого является то, что администратор сети может решить повторно использовать дескриптор после отключения всех соединений с узлом.

Так что если вы получили дескриптор «7» для узла /net/magenta, подсоединились к нему, передали сообщение и затем отсоединились, то существует возможность того, что администратор сети заново назначит дескриптор «7» другому узлу.

Поскольку дескрипторы узлов в сети не уникальны, возникает вопрос: «А как передавать эти штуки по сети?» Очевидно, взгляды узла magenta и узла wintermute на дескриптор «7» будут радикально отличаться. Существуют два способа решения этой проблемы:

• Не передавать по сети дескрипторы узлов и пользоваться символьными именами (например, /net/wintermute).

• Применять функцию netmgr_remote_nd().

Первый метод хорош как универсальное решение. Второй метод достаточно удобен на практике.

int netmgr_remote_nd(int remote_nd, int local_nd);

Эта функция принимает два параметра, где remote_nd — дескриптор узла целевой машины, a local_nd — дескриптор узла, который нужно преобразовать из точки зрения локальной машины в точку зрения целевой. Результатом является дескриптор узла, корректный с точки зрения заданной удаленной машины.

Например, пусть wintermute — имя нашей локальной машины. У нас есть дескриптор узла «7», который является корректным на нашей локальной машине и указывает на узел magenta. Мы хотели бы выяснить, какой дескриптор узла использует узел magenta для связи с нашим узлом:

int remote_nd;

int magenta_nd;

magenta_nd = netmgr_strtond("/net/magenta", NULL);

printf("ND узла magenta — %dn", magenta_nd);

remote_nd = netmgr_remote_nd(magenta_nd, ND_LOCAL_NODE);

printf("С точки зрения узла magenta, наш ND — %dn",

 remote_nd);

Это программа могла бы вывести что-то вроде следующего:

ND узла magenta - 7

С точки зрения узла magenta, наш ND — 4

Это говорит о том, что на узле magenta нашему узлу соответствует дескриптор «4». (Обратите внимание на использование специальной константы ND_LOCAL_NODE, которая в действительности равна нулю, для указания на «локальный узел»).

Теперь вернемся к тому, о чем мы говорили в разделе «Кто послал сообщение?»). Параметр struct _msg_info содержит, среди всего прочего, два дескриптора узлов:

struct _msg_info {

 int nd;

Перейти на страницу:

Роб Кёртен читать все книги автора по порядку

Роб Кёртен - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


Введение в QNX/Neutrino 2. Руководство по программированию приложений реального времени в QNX Realtime Platform отзывы

Отзывы читателей о книге Введение в QNX/Neutrino 2. Руководство по программированию приложений реального времени в QNX Realtime Platform, автор: Роб Кёртен. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*