Kniga-Online.club
» » » » Уильям Стивенс - UNIX: разработка сетевых приложений

Уильям Стивенс - UNIX: разработка сетевых приложений

Читать бесплатно Уильям Стивенс - UNIX: разработка сетевых приложений. Жанр: Программное обеспечение издательство -, год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

 char *const envp[] */ );

int execve(const char *pathname, char *const argv[], char *const envp[]);

int execlp(const char *filename, const char *arg0, .... /* (char*)0 */ );

int execvp(const char *filename, char *const argv[]);

Все шесть функций возвращают: -1 в случае ошибки, если же функция выполнена успешно, то ничего не возвращается

Эти функции возвращают вызывающему процессу значение -1, только если происходит ошибка. Иначе управление передается в начало новой программы, обычно функции main.

Отношения между этими шестью функциями показаны на рис. 4.4. Обычно только функция execve является системным вызовом внутри ядра, а остальные представляют собой библиотечные функции, вызывающие execve.

Рис. 4.4. Отношения между шестью функциями exec

Отметим различия между этими функциями:

1. Три верхних функции (см. рис. 4.4) принимают каждую строку как отдельный аргумент, причем перечень аргументов завершается пустым указателем (так как их количество может быть различным). У трех нижних функций имеется массив argv, содержащий указатели на строки. Этот массив должен содержать пустой указатель, определяющий конец массива, поскольку размер массива не задается.

2. Две функции в левой колонке получают аргумент filename. Он преобразуется в pathname с использованием текущей переменной окружения PATH. Если аргумент filename функций execlp или execvp содержит косую черту (/) в любом месте строки, переменная PATH не используется. Четыре функции в двух правых колонках получают полностью определенный аргумент pathname.

3. Четыре функции в двух левых колонках не получают явного списка переменных окружения. Вместо этого с помощью текущего значения внешней переменной environ создается список переменных окружения, который передается новой программе. Две функции в правой колонке получают точный список переменных окружения. Массив указателей envp должен быть завершен пустым указателем.

Дескрипторы, открытые в процессе перед вызовом функции exec, обычно остаются открытыми во время ее выполнения. Мы говорим «обычно», поскольку это свойство может быть отключено при использовании функции fcntl для установки флага дескриптора FD_CLOEXEC. Это нужно серверу inetd, о котором пойдет речь в разделе 13.5.

4.8. Параллельные серверы

Сервер, представленный в листинге 4.2, является последовательным (итеративным) сервером. Для такого простого сервера, как сервер времени и даты, это допустимо. Но когда обработка запроса клиента занимает больше времени, мы не можем связывать один сервер с одним клиентом, поскольку нам хотелось бы обрабатывать множество клиентов одновременно. Простейшим способом написать параллельный сервер под Unix является вызов функции fork, порождающей дочерний процесс для каждого клиента. В листинге 4.3 представлена общая схема типичного параллельного сервера.

Листинг 4.3. Типичный параллельный сервер

pid_t pid;

int listenfd, connfd;

listenfd = Socket( ... );

/* записываем в sockaddr_in{} параметры заранее известного порта сервера */

Bind(listenfd, ... );

Listen(listenfd, LISTENQ);

for (;;) {

 connfd = Accept(listenfd, ...); /* вероятно, блокировка */

 if ((pid = Fork() == 0) {

  Close(listenfd); /* дочерний процесс закрывает

                      прослушиваемый сокет */

  doit(connfd);    /* обработка запроса */

  Close(connfd);   /* с этим клиентом закончено */

  exit(0);         /* дочерний процесс завершен */

 }

 Close(connfd);    /* родительский процесс закрывает

                      присоединенный сокет */

}

Когда соединение установлено, функция accept возвращает управление, сервер вызывает функцию fork и затем дочерний процесс занимается обслуживанием клиента (по присоединенному сокету connfd), а родительский процесс ждет другого соединения (на прослушиваемом сокете listenfd). Родительский процесс закрывает присоединенный сокет, поскольку новый клиент обрабатывается дочерним процессом.

Мы предполагаем, что функция doit в листинге 4.3 выполняет все, что требуется для обслуживания клиента. Когда эта функция возвращает управление, мы явно закрываем присоединенный сокет с помощью функции close в дочернем процессе. Делать это не обязательно, так как в следующей строке вызывается exit, а прекращение процесса подразумевает, в частности, закрытие ядром всех открытых дескрипторов. Включать явный вызов функции close или нет — дело вкуса программиста.

В разделе 2.6 мы сказали, что вызов функции close на сокете TCP вызывает отправку сегмента FIN, за которой следует обычная последовательность прекращения соединения TCP. Почему же функция close(connfd) из листинга 4.3, вызванная родительским процессом, не завершает соединение с клиентом? Чтобы понять происходящее, мы должны учитывать, что у каждого файла и сокета есть счетчик ссылок (reference count). Для счетчика ссылок поддерживается своя запись в таблице файла [110, с. 57–60]. Эта запись содержит значения счетчика дескрипторов, открытых в настоящий момент, которые соответствуют этому файлу или сокету. В листинге 4.3 после завершения функции socket запись в таблице файлов, связанная с listenfd, содержит значение счетчика ссылок, равное 1. Но после завершения функции fork дескрипторы дублируются (для совместного использования и родительским, и дочерним процессом), поэтому записи в таблице файла, ассоциированные с этими сокетами, теперь содержат значение 2. Следовательно, когда родительский процесс закрывает connfd, счетчик ссылок уменьшается с 2 до 1. Но фактического закрытия дескриптора не произойдет, пока счетчик ссылок не станет равен 0. Это случится несколько позже, когда дочерний процесс закроет connfd.

Рассмотрим пример, иллюстрирующий листинг 4.3. Прежде всего, на рис. 4.5 показано состояние клиента и сервера в тот момент, когда сервер блокируется при вызове функции accept и от клиента приходит запрос на соединение.

Рис. 4.5. Состояние соединения клиент-сервер перед завершением вызванной функции accept

Сразу же после завершения функции accept мы получаем сценарий, изображенный на рис. 4.6. Соединение принимается ядром и создается новый сокет — connfd. Это присоединенный сокет, и теперь данные могут считываться и записываться по этому соединению.

Рис. 4.6. Состояние соединения клиент-сервер после завершения функции accept

Следующим действием параллельного сервера является вызов функции fork. На рис. 4.7 показано состояние соединения после вызова функции fork.

Рис. 4.7. Состояние соединения клиент-сервер после вызова функции fork

Обратите внимание, что оба дескриптора listenfd и connfd совместно используются родительским и дочерним процессами.

Далее родительский процесс закрывает присоединенный сокет, а дочерний процесс закрывает прослушиваемый сокет. Это показано на рис. 4.8.

Рис. 4.8. Состояние соединения клиент-сервер после закрытия родительским и дочерним процессами соответствующих сокетов

Это и есть требуемое конечное состояние сокетов. Дочерний процесс управляет соединением с клиентом, а родительский процесс может снова вызвать функцию accept на прослушиваемом сокете, чтобы обрабатывать следующее клиентское соединение.

4.9. Функция close

Обычная функция Unix close также используется для закрытия сокета и завершения соединения TCP.

#include <unistd.h>

int close(int sockfd);

По умолчанию функция close помечает сокет TCP как закрытый и немедленно возвращает управление процессу. Дескриптор сокета больше не используется процессом и не может быть передан в качестве аргумента функции read или write. Но TCP попытается отправить данные, которые уже установлены в очередь, и после их отправки осуществит нормальную последовательность завершения соединения TCP (см. раздел 2.5).

В разделе 7.5 рассказывается о параметре сокета SO_LINGER, который позволяет нам изменять последовательность закрытия сокета TCP. В этом разделе мы также назовем действия, благодаря которым приложение TCP может получить гарантию того, что приложение-собеседник получило данные, поставленные в очередь на отправку, но еще не отправленные.

Счетчик ссылок дескриптора

Перейти на страницу:

Уильям Стивенс читать все книги автора по порядку

Уильям Стивенс - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


UNIX: разработка сетевых приложений отзывы

Отзывы читателей о книге UNIX: разработка сетевых приложений, автор: Уильям Стивенс. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*