Kniga-Online.club
» » » » Олег Цилюрик - QNX/UNIX: Анатомия параллелизма

Олег Цилюрик - QNX/UNIX: Анатомия параллелизма

Читать бесплатно Олег Цилюрик - QNX/UNIX: Анатомия параллелизма. Жанр: Программное обеспечение издательство -, год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

• SIGWINCH [20] — сигнал, который генерируется (в консольном режиме pterm и xterm эмулируют его вручную при изменении их размеров) при изменении размера окна (window size change) для запущенного в окне приложения (mc, mqc…), чтобы оно перерисовало свой экран вывода.

Примечание

В QNX определено еще два специфических сигнала, которые вряд ли должны представлять для нас интерес:

• SIGIOT [6] — IOT-инструкция; никогда не генерируется для платформы x86.

• SIGPWR [19] — сигнал power-fail restart о котором в технической документации QNX ничего не говорится, но в преамбуле, описывающей нововведения версии 6.2.1, сказано: «corrected SIGPWR to SIGTERM», то есть этот сигнал, очевидно, — рудимент прежних версий системы.

Примечание

POSIX допускает, что не все сигналы могут быть реализованы. Более того, допускается ситуация, когда некоторое символическое имя сигнала определено, но сам сигнал отсутствует в системе (изменения такого рода вполне могут наблюдаться при переходе от одной версии QNX к другой). Для диагностики реального наличия сигнала можно воспользоваться рекомендацией, приведенной в информативной части стандарта POSIX 1003.1: наличие поддержки сигнала сообщает вызов функции sigaction() с аргументами act и oact, установленными в NULL. Приведем простейший тест (файл s1.cc), реализующий рекомендацию POSIX в QNX 6.2.1:

#include <stdlib.h>

#include <stream.h>

#include <errno.h>

#include <signal.h>

int main(int argc, char *argv[]) {

 cout << "SIGNO";

 for (int i = _SIGMIN; i <= _SIGMAX; i++) {

  if (i % 8 == 1) cout << endl << i << ':';

  int res = sigaction(i, NULL, NULL);

  cout << 't' << ((res != 0 && errno == EINVAL) ? '-' : '+');

 }

 cout << endl;

 return EXIT_SUCCESS;

}

И результат его выполнения:

SIGNO

1:  + + + + + + + +

9:  + + + + + + + +

17: + + + + + + + +

25: + + + + + + + +

33: + + + + + + + +

41: + + + + + + + +

49: + + + + + + + +

57: - - - - - - - -

Система «считает» все сигналы 1…56 реализуемыми, а последние 8 специфических сигналов QNX, как упоминалось выше, не допускают применения к ним sigaction(). Здесь с учетом цитировавшейся выше раскладкой сигналов QNX есть небольшая загадка: максимальным номером POSIX-сигнала, определенного в <signal.h>, является 31 (SIGXFSZ – 31); там же в комментарии есть фраза: «допустимый диапазон пользовательских сигналов — от 1 до 56, используемых ядром — от 57 до 64». Непонятно, в каком качестве используются сигналы 32–40, непосредственно предшествующие сигналам реального времени (41–56) и диагностируемые sigaction() как действительные (valid)? Позже мы увидим, что они обслуживаются системой наравне с документированными сигналами.

Традиционная обработка сигнала

В этой части изложения мы рассмотрим традиционные модели перехвата сигналов и установки для них собственных обработчиков (в том числе и игнорирование или восстановление стандартной обработки по умолчанию). Термин «традиционный» здесь означает, что мы бегло рассмотрим обработку сигналов применительно к процессам и стандартным сигналам UNIX (не сигналам реального времени), то есть в том изложении, как она традиционно рассматривается в литературе по UNIX (и здесь сигнал воспринимается, конечно же, единственным потоком приложения, а не процессом, но в этом случае различие не принципиально). Позже мы рассмотрим модель обработки сигналов реального времени и расширим ее на многопоточные приложения.

«Старая» модель обработки сигнала

В ранних версиях UNIX была принята единственная модель обработки сигналов, основанная на функции signal(), которая подразумевает семантику так называемых «ненадежных сигналов», принятую в этих ОС. Позже эта модель была подвержена радикальной критике, вскрывшей ее «ненадежность». Данная модель сохранена для совместимости с ранее разработанным программным обеспечением. Она обладает существенными недостатками, основными из которых являются:

• процесс не может заблокировать сигнал, то есть отложить получение сигнала на период выполнения критических участков кода;

• каждый раз при получении сигнала его диспозиция устанавливается на действие по умолчанию, и при необходимости продолжить обработку поступающих сигналов требуется повторно восстанавливать требуемый обработчик.

Вот пример (файл s2.cc) использования этой модели в коде, который уже стал иллюстративным образцом и кочует из одного источника в другой:

Ненадежная модель реакции на сигнал

#include <iostream.h>

#include <signal.h>

#include <unistd.h>

// обработчик сигнала SIGINT

static void handler(int signo) {

 // восстановить обработчик:

 signal(SIGINT, handler);

 cout << "Получен сигнал SYSINT" << endl;

}

int main() {

 // устанавливаются диспозиции сигналов:

 signal(SIGINT, handler);

 signal(SIGSEGV, SIG_DFL);

 signal(SIGTERM, SIG_IGN);

 while(true) pause();

}

Примечание

Макросы SIG_DFL и SIG_IGN определяются так:

#define SIG_ERR  (( void(*)(_SIG_ARGS))-1 )

#define SIG_DFL  (( void(*)(_SIG_ARGS))0)

#define SIG_IGN  (( void(*)(_SIG_ARGS))1)

#define SIG_HOLD (( void(*)(_SIG_ARGS))2)

где _SIG_ARGS — это фактически тип int. SIG_DFL и SIG_IGN устанавливают диспозиции сигнала «по умолчанию» и «игнорировать» соответственно, а о SIG_HOLD мы будем отдельно говорить позже.

Выполнение этой программы вам будет не так просто прекратить: на комбинацию завершения [Ctrl+C] она отвечает сообщением о получении сигнала... и все. Воспользуемся для этого посылкой программе опять же сигнала, но из другого процесса (другого экземпляра командного интерпретатора). Смотрим PID запущенного процесса:

# pidin

...

220//86 1 /s2 10 r STOPPED

...

И посылаем процессу сигнал завершения:

# kill -9 2207786 или kill -SIGKILL 2207786

Таким же образом, как показано командой kill, мы будем посылать сигналы процессам «извне» и в описываемых далее тестах, не останавливаясь подробно, как это происходит, в том числе и для сигналов реального времени (41…56).

Предыдущий пример можно переписать (файл s4.cc) для обеспечения часто требуемой на практике защиты от немедленного прерывания выполнения по [Ctrl+C], чтобы дать программе возможность выполнить все требуемые операции по завершению (сбросить буферы данных на диск, закрыть файлы, сокеты и другие используемые объекты):

#include <stdlib.h>

#include <iostream.h>

#include <signal.h>

#include <unistd.h>

static void handler(int signo) {

 cout << "Saving data ... wait.r" << flush;

 sleep(2); // здесь выполняются все завершающие действия!

 cout << "                          " << flush;

 exit(EXIT_SUCCESS);

}

int main() {

 signal(SIGINT, handler);

 signal(SIGSEGV, SIG_DFL);

 signal(SIGTERM, SIG_IGN);

 while (true) pause();

}

Оператор ожидания pause() при поступлении сигналов завершается с возвратом -1, а переменная errno устанавливается в EINTR. Этот оператор дает нам еще один способ (файл s3.cc) неявного (без явной установки обработчиков) использования сигналов:

#include <stream.h>

#include <stdlib.h>

#include <unistd.h>

int main(void) {

 alarm(5);

 cout << "Waiting to die in 5 seconds ..." << endl;

 pause();

 return EXIT_SUCCESS;

}

Описываемая модель обработки сигналов обладает рядом недостатков, считается устаревшей и, более того, как было показано, не обеспечивает надежную обработку сигналов. Тем не менее эту модель достаточно широко применяют в простых случаях, например при необходимости установить тайм-аут для некоторой операции. Вот как, к примеру, устанавливается тайм-аут ожидания установления соединения в TCP/IP-клиенте [9]:

void alarm_handler(int sig) { return; }

int main() {

 ...

 signal(SIGALRM, alarm_handler); alarm(5);

 int rc = connect( ... );

 alarm(0);

 if (rc < 0 && errno == EINTR)

 cout << "Истек тайм-аут" << endl, exit(EXIT_FAILURE);

 ...

}

Здесь уместно напомнить немаловажное обстоятельство, связанное с сигналами, которое обделяется вниманием во многих руководствах по программированию: большинство блокирующих вызовов API (connect(), delay(), wait(), waitid() и многие другие) будут разблокированы при получении блокированным потоком любого сигнала. Такие вызовы API, как pause() и sigwait(), вообще предназначены только для выполнения пассивной блокировки до момента поступления сигнала. Многие их них возвращают значение или устанавливают в качестве кода системной ошибки errno значение EINTR, специально отведенное для отражения такого результата завершения, как прерывание поступившим извне сигналом. Мы неоднократно будем использовать это обстоятельство в тексте примеров программного кода, например:

Перейти на страницу:

Олег Цилюрик читать все книги автора по порядку

Олег Цилюрик - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


QNX/UNIX: Анатомия параллелизма отзывы

Отзывы читателей о книге QNX/UNIX: Анатомия параллелизма, автор: Олег Цилюрик. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*