Уильям Стивенс - UNIX: разработка сетевых приложений
В листинге 30.15 показаны только функции my_lock_wait и my_lock_release. Они содержат вызовы функций Pthreads, предназначенных для блокирования и разблокирования взаимного исключения.
Листинг 30.15. Функции my_lock_wait и my_lock_release: использование блокировок Pthread
//server/lock_pthread.c
17 void
18 my_lock_wait()
19 {
20 Pthread_mutex_lock(mptr),
21 }
22 void
23 my_lock_release()
24 {
25 Pthread_mutex_unlock(mptr);
26 }
Сравнивая строки 3 и 4 табл. 30.1, можно заметить, что версия, использующая синхронизацию процессов при помощи взаимного исключения, характеризуется более высоким быстродействием, чем версия с блокировкой файла.
30.9. Сервер TCP с предварительным порождением процессов: передача дескриптора
Последней модификацией нашего сервера с предварительным порождением процессов является версия, в которой только родительский процесс вызывает функцию accept, а затем «передает» присоединенный сокет какому-либо одному дочернему процессу. Это помогает обойти необходимость защиты вызова accept, но требует некоторого способа передачи дескриптора между родительским и дочерним процессами. Эта техника также несколько усложняет код, поскольку родительскому процессу приходится отслеживать, какие из дочерних процессов заняты, а какие свободны, чтобы передавать дескриптор только свободным дочерним процессам.
В предыдущих примерах сервера с предварительным порождением процессов родительскому процессу не приходилось беспокоиться о том, какой дочерний процесс принимает соединение с клиентом. Этим занималась операционная система, организуя вызов функции accept одним из свободных дочерних процессов или блокировку файла или взаимного исключения. Из первых двух столбцов табл. 30.2 видно, что операционная система, в которой мы проводим измерения, осуществляет равномерную циклическую загрузку свободных процессов клиентскими соединениями.
В данном примере для каждого дочернего процесса нам нужна некая структура, содержащая информацию о нем. Заголовочный файл child.h, в котором определяется структура Child, показан в листинге 30.16.
Листинг 30.16. Структура Child
//server/child.h
1 typedef struct {
2 pid_t child_pid; /* ID процесса */
3 int child_pipefd; /* программный (неименованный) канал между
родительским и дочерним процессами */
4 int child_status; /* 0 = готово */
5 long child_count; /* количество обрабатываемых соединений */
6 } Child;
7 Child *cptr; /* массив структур Child */
Мы записываем идентификатор дочернего процесса, дескриптор программного канала (pipe) родительского процесса, связанного с дочерним, статус дочернего процесса и количество обрабатываемых дочерним процессом клиентских соединений. Это количество выводится обработчиком сигнала SIGINT и позволяет нам отслеживать распределение клиентских запросов между дочерними процессами.
Рассмотрим сначала функцию child_make, которая приведена в листинге 30.17. Мы создаем канал и доменный сокет Unix (см. главу 14) перед вызовом функции fork. После того, как создан дочерний процесс, родительский процесс закрывает один дескриптор (sockfd[1]), а дочерний процесс закрывает другой дескриптор (sockfd[0]). Более того, дочерний процесс подключает свой дескриптор канала (sockfd[1]) к стандартному потоку сообщений об ошибках, так что каждый дочерний процесс просто использует это устройство для связи с родительским процессом. Этот механизм проиллюстрирован схемой, приведенной на рис. 30.3.
Листинг 30.17. Функция child_make: передача дескриптора в сервере с предварительным порождением дочерних процессов
//server/child05.c
1 #include "unp.h"
2 #include "child.h"
3 pid_t
4 child_make(int i, int listenfd, int addrlen)
5 {
6 int sockfd[2];
7 pid_t pid;
8 void child_main(int, int, int);
9 Socketpair(AF_LOCAL, SOCK_STREAM, 0, sockfd);
10 if ((pid = Fork()) > 0) {
11 Close(sockfd[1]);
12 cptr[i].child_pid = pid;
13 cptr[i].child_pipefd = sockfd[0];
14 cptr[i].child_status = 0;
15 return (pid); /* родительский процесс */
16 }
17 Dup2(sockfd[1], STDERR_FILENO); /* канал от дочернего процесса к
родительскому */
18 Close(sockfd[0]);
19 Close(sockfd[1]);
20 Close(listenfd); /* дочернему процессу не требуется, чтобы
он был открыт */
21 child_main(i, listenfd, addrlen); /* никогда не завершается */
22 }
Рис. 30.3. Канал после того, как дочерний и родительский процесс закрыли один конец
После создания всех дочерних процессов мы получаем схему, показанную на рис. 30.4. Мы закрываем прослушиваемый сокет в каждом дочернем процессе, поскольку только родительский процесс вызывает функцию accept. Мы показываем на рисунке, что родительский процесс должен обрабатывать прослушиваемый сокет, а также все доменные сокеты. Как можно догадаться, родительский процесс использует функцию select для мультиплексирования всех дескрипторов.
Рис. 30.4. Каналы после создания всех дочерних процессов
В листинге 30.18 показана функция main. В отличие от предыдущих версий этой функции, в данном случае в памяти размещаются все наборы дескрипторов и в каждом наборе включены все биты, соответствующие прослушиваемому сокету и каналу каждого дочернего процесса. Вычисляется также максимальное значение дескриптора и выделяется память для массива структур Child. Основной цикл запускается при вызове функции select.
Листинг 30.18. Функция main, использующая передачу дескриптора
//server/serv05.c
1 #include "unp.h"
2 #include "child.h"
3 static int nchildren;
4 int
5 main(int argc, char **argv)
6 {
7 int listenfd, i, navail, maxfd, nsel, connfd, rc;
8 void sig_int(int);
9 pid_t child_make(int, int, int);
10 ssize_t n;
11 fd_set rset, masterset;
12 socklen_t addrlen, clilen;
13 struct sockaddr *cliaddr;
14 if (argc == 3)
15 listenfd = Tcp_listen(NULL, argv[1], &addrlen);
16 else if (argc == 4)
17 listenfd = Tcp_listen(argv[1], argv[2], &addrlen);
18 else
19 err_quit("usage; serv05 [ <host> ] <port#> <#children>");
20 FD_ZERO(&masterset);
21 FD_SET(listenfd, &masterset);
22 maxfd = listenfd;
23 cliaddr = Malloc(addrlen);
24 nchildren = atoi(argv[argc - 1]);
25 navail = nchildren;
26 cptr = Calloc(nchildren, sizeof(Child));
27 /* предварительное создание дочерних процессов */
28 for (i = 0; i < nchildren; i++) {
29 child_make(i, listenfd, addrlen); /* родительский процесс
завершается */
30 FD_SET(cptr[i].child_pipefd, &masterset);
31 maxfd = max(maxfd, cptr[i].child_pipefd);
32 }
33 Signal(SIGINT, sig_int);
34 for (;;) {
35 rset = masterset;
36 if (navail <= 0)
37 FD_CLR(listenfd, &rset); /* выключаем, если нет свободных
дочерних процессов */
38 nsel = Select(maxfd + 1, &rset, NULL, NULL, NULL);
39 /* проверка новых соединений */
40 if (FD_ISSET(listenfd, &rset)) {
41 clilen = addrlen;
42 connfd = Accept(listenfd, cliaddr, &clilen);
43 for (i = 0; i < nchildren; i++)
44 if (cptr[i].child_status == 0)
45 break; /* свободный */
46 if (i == nchildren)
47 err_quit("no available children");
48 cptr[i].child_status = 1; /* отмечаем этот дочерний процесс как
занятый */
49 cptr[i].child_count++;
50 navail--;
51 n = Write_fd(cptr[i].child_pipefd, 1, connfd);
52 Close(connfd);
53 if (--nsel == 0)
54 continue; /* с результатами select() закончено */
55 }
56 /* поиск освободившихся дочерних процессов */
57 for (i = 0; i < nchildren; i++) {
58 if (FD_ISSET(cptr[i].child_pipefd, &rset)) {
59 if ((n = Read(cptr[i].child_pipefd, &rc, 1)) == 0)
60 err_quit("child %d terminated unexpectedly", i);
61 cptr[i].child_status = 0;
62 navail++;
63 if (--nsel == 0)
64 break; /* с результатами select() закончено */
65 }
66 }
67 }
68 }