Брайан Керниган - Язык программирования Си. Издание 3-е, исправленное
Length *lengths[];
Аналогично объявление
typedef char *String;
делает String синонимом char *, т. e. указателем на char, и правомерным будет, например, следующее его использование:
String р, lineptr[MAXLINES], alloc(int);
int strcmp(String, String);
p = (String) malloc(100);
Заметим, что объявляемый в typedef тип стоит на месте имени переменной в обычном объявлении, а не сразу за словом typedef. С точки зрения синтаксиса слово typedef напоминает класс памяти - extern, static и т. д. Имена типов записаны с заглавных букв для того, чтобы они выделялись.
Для демонстрации более сложных примеров применения typedef воспользуемся этим средством при задании узлов деревьев, с которыми мы уже встречались в данной главе.
typedef struct tnode *Treeptr;
typedef struct tnode {/* узел дерева: */
char *word; /* указатель на текст */
int count; /* число вхождений */
Treeptr left; /* левый сын */
Treeptr right; /* правый сын */
} Treenode;
В результате создаются два новых названия типов: Treenode (структура) и Treeptr (указатель на структуру). Теперь программу talloc можно записать в следующем виде:
Treeptr talloc(void) {
return (Treeptr) malloc(sizeof(Treenode));
}
Следует подчеркнуть, что объявление typedef не создает объявления нового типа, оно лишь сообщает новое имя уже существующему типу. Никакого нового смысла эти новые имена не несут, они объявляют переменные в точности с теми же свойствами, как если бы те были объявлены напрямую без переименования типа. Фактически typedef аналогичен #define с тем лишь отличием, что при интерпретации компилятором он может справиться с такой текстовой подстановкой, которая не может быть обработана препроцессором. Например
typedef int (*PFI)(char *, char *);
создает тип PFI - "указатель на функцию (двух аргументов типа char *), возвращающую int", который, например, в программе сортировки, описанной в главе 5, можно использовать в таком контексте:
PFI strcmp, numcmp;
Помимо просто эстетических соображений, для применения typedef существуют две важные причины. Первая - параметризация программы, связанная с проблемой переносимости. Если с помощью typedef объявить типы данных, которые, возможно, являются машинно-зависимыми, то при переносе программы на другую машину потребуется внести изменения только в определения typedef. Одна из распространенных ситуаций - использование typedef-имен для варьирования целыми величинами. Для каждой конкретной машины это предполагает соответствующие установки short, int или long, которые делаются аналогично установкам стандартных типов, например size_t и ptrdiff_t.
Вторая причина, побуждающая к применению typedef,- желание сделать более ясным текст программы. Тип, названный Тreeptr (от английских слов tree - дерево и pointer - указатель), более понятен, чем тот же тип, записанный как указатель на некоторую сложную структуру.
6.8 Объединения
Объединение - это переменная, которая может содержать (в разные моменты времени) объекты различных типов и размеров. Все требования относительно размеров и выравнивания выполняет компилятор. Объединения позволяют хранить разнородные данные в одной и той же области памяти без включения в программу машинно-зависимой информации. Эти средства аналогичны вариантным записям в Паскале.
Примером использования объединений мог бы послужить сам компилятор, заведующий таблицей символов, если предположить, что константа может иметь тип int, float или являться указателем на символ и иметь тип char *. Значение каждой конкретной константы должно храниться в переменной соответствующего этой константе типа. Работать с таблицей символов всегда удобнее, если значения занимают одинаковую по объёму память и запоминаются в одном и том же месте независимо от своего типа. Цель введения в программу объединения - иметь переменную, которая бы на законных основаниях хранила в себе значения нескольких типов. Синтаксис объединений аналогичен синтаксису структур. Приведем пример объединения.
union u_tag {
int ival;
float fval;
char *sval;
} u;
Переменная u будет достаточно большой, чтобы в ней поместилась любая переменная из указанных трех типов: точный ее размер зависит от реализации. Значение одного из этих трех типов может быть присвоено переменной u и далее использовано в выражениях, если это правомерно, т. е. если тип взятого ею значения совпадает с типом последнего присвоенного ей значения. Выполнение этого требования в каждый текущий момент - целиком на совести программиста. В том случае, если нечто запомнено как значение одного типа, а извлекается как значение другого типа, результат зависит от реализации. Синтаксис доступа к элементам объединения следующий:
имя-объединения.элемент
или
указатель-на-объединение-›элемент
т. е. в точности такой, как в структурах. Если для хранения типа текущего значения u использовать, скажем, переменную utype, то можно написать такой фрагмент программы:
if (utype == INT)
printf("%dn", u.ival);
else if (utype == FLOAT)
printf("%fn", u.fval);
else if (utype == STRING)
printf("%sn", u.sval);
else
printf ("неверный тип %d в utypen", utype);
Объединения могут входить в структуры и массивы, и наоборот. Запись доступа к элементу объединения, находящегося в структуре (как и структуры, находящейся в объединении), такая же, как и для вложенных структур. Например, в массиве структур
struct {
char *name;
int flags;
int utype;
union {
int ival;
float fval;
char *sval;
} u;
} symtab[NSYM];
к ival обращаются следующим образом:
symtab[i].u.ival
а к первому символу строки sval можно обратиться любым из следующих двух способов:
*symtab[i].u.sval
symtab[i].u.sval[0]
Фактически объединение - это структура, все элементы которой имеют нулевое смещение относительно ее базового адреса и размер которой позволяет поместиться в ней самому большому ее элементу, а выравнивание этой структуры удовлетворяет всем типам объединения. Операции, применимые к структурам, годятся и для объединений, т. е. законны присваивание объединения и копирование его как единого целого, взятие адреса от объединения и доступ к отдельным его элементам.
Инициализировать объединение можно только значением, имеющим тип его первого элемента; таким образом, упомянутую выше переменную u можно инициализировать лишь значением типа int.
В главе 8 (на примере программы, заведующей выделением памяти) мы покажем, как, применяя объединение, можно добиться, чтобы расположение переменной было выровнено по соответствующей границе в памяти.
6.9 Битовые поля
При дефиците памяти может возникнуть необходимость запаковать несколько объектов в одно слово машины. Одна из обычных ситуаций, встречающаяся в задачах обработки таблиц символов для компиляторов, - это объединение групп однобитовых флажков. Форматы некоторых данных могут от нас вообще не зависеть и диктоваться, например, интерфейсами с аппаратурой внешних устройств: здесь также возникает потребность адресоваться к частям слова.
Вообразим себе фрагмент компилятора, который заведует таблицей символов. Каждый идентификатор программы имеет некоторую связанную с ним информацию: например, представляет ли он собой ключевое слово и, если это переменная, к какому классу принадлежит: внешняя и/или статическая и т. д. Самый компактный способ кодирования такой информации - расположить однобитовые флажки в одном слове типа char или int.
Один из распространенных приемов работы с битами основан на определении набора "масок", соответствующих позициям этих битов, как, например, в
#define KEYWORD 01 /* ключевое слово */
#define EXTERNAL 02 /* внешний */
#define STATIC 04 /* статический */
или в
enum { KEYWORD = 01, EXTERNAL = 02, STATIC = 04 };
Числа должны быть степенями двойки. Тогда доступ к битам становится делом "побитовых операций", описанных в главе 2 (сдвиг, маскирование, взятие дополнения). Некоторые виды записи выражений встречаются довольно часто. Так,
flags |= EXTERNAL | STATIC;
устанавливает 1 в соответствующих битах переменной flags,