Джеймс Уиттакер - Как тестируют в Google
Чаще всего тест-кейсы хранились в электронных таблицах и документах. Команды, работающие по быстрым методологиям с короткими циклами выпуска, не очень заботятся о сохранении тест-кейсов. Как только выходит новая фича, скрипты начинают падать, и тесты приходится переписывать заново. Поэтому документа, который можно использовать, а потом с чистым сердцем удалить, — вполне достаточно. Формат такого документа не подойдет для конкретных тест-кейсов с действиями, но сгодится для описания контекста тестовой сессии. Такие тесты обычно менее регламентированы и, по сути, просто указывают, какие фичи нужно исследовать.
Конечно, есть команды, которые хранят тестовые процедуры и данные в довольно сложных таблицах. Некоторые даже копируют данные ACC-анализа в электронные таблицы, потому что они, видите ли, более гибкие, чем Google Test Analytics. Но такой подход требует дисциплины и целостности в команде, ведь работа одного тестировщика может ограничить работу другого. Большим командам с их текучкой нужен другой подход. Нужна структура, которая переживет любого участника команды.
Электронные таблицы все же удобнее документов, потому что в них имеются подходящие столбцы для процедур, данных и отметок о результатх. Их легко настроить под себя. Google Sites и другие разновидности онлайновых вики-систем часто используют, чтобы транслировать тестовую информацию другим заинтересованным людям. Их легко использовать совместно и редактировать.
С ростом Google у многих команд росли объемы тест-кейсов, ими нужно было лучше управлять. Некоторые документы с тест-кейсами выросли до таких размеров, что даже поиск в них стал невозможен. Нужен был новый подход. Наши тестировщики построили систему на основе нескольких коммерческих продуктов и доморощенных систем управления тест-кейсами, знакомых им по предыдущим местам работы. Систему назвали Test Scribe.
Test Scribe хранит тест-кейсы в жесткой структуре. Можно включить или исключить тест-кейс из конкретной тестовой сессии. Реализация была примитивной, и энтузиазм по поводу ее использования быстро угас. И хотя многие команды оставили что-то от нее и возились с этим несколько кварталов, мы ее все-таки похоронили. В 2010 году Джорданна Корд, старший разработчик в тестировании, написала новую программу. Это была система Google Test Case Manager (GTCM).
Рис. 3.10. Домашняя страница GTCM сосредоточена на поиске
GTCM создали, чтобы сделать процесс написания тестов проще, создать гибкий формат тегов, который можно адаптировать под любой проект, упростить поиск и повторное использование тестов. И — самое важное — интеграция GTCM с остальной инфраструктурой Google. Посмотрите на снимки экранов GTCM (рис. 3.10–3.14). На рис. 3.11 показана страница создания тест-кейса. Можно создавать произвольные разделы или метки, поэтому GTCM поддерживает любые схемы, от классических тестов до исследовательских туров, «огурцов»[40] и описаний пользовательских историй. Некоторые тестовые команды даже хранят фрагменты кода и данные прямо в тест-кейсах GTCM. GTCM помогает в работе любым тестовым командам и учитывает их различающиеся представления тест-кейсов.
Рис. 3.11. Создание проекта в GTCM
Рис. 3.12. Создание теста в GTCM
Рис. 3.13. Просмотр тест-кейсов при поиске Chrome в GTCM
Рис. 3.14. Простой тест-кейс для диалогового окна About в Chrome
Метрики, полученные от GTCM, дают представление о том, что происходит с тест-кейсами в общем. Можно понаблюдать за графиками общего количества тестов и результатов тестов на рис. 3.15 и 3.16. Общее количество тестов приближается к асимптоте. Это потому, что Google закрывает старые проекты, ориентированные на ручное регрессионное тестирование, вместе с их тестами. Кроме того, GTCM в основном содержит ручные тесты, а многие команды заменяют ручные методы тестирования автоматизацией, краудсорсингом или исследовательским тестированием. Поэтому общее число тест-кейсов во внутренней базе TCM уменьшается, хотя покрытие при этом увеличивается. Количество проведенных тестов тоже увеличивается, так как в этой области доминируют несколько больших команд, для которых ручное тестирование обязательно (например, команда Android).
Рис. 3.15. Изменение количества тестов со временем в GTCM
Общее количество проведенных ручных тестов, как и следовало ожидать, увеличивается (рис. 3.16).
Рис. 3.16. Изменение количества результатов тестов со временем в GTCM
Посмотрим на график количества багов, показанный в GTCM (рис. 3.17). Он интересен, но еще не может показать всю картину. Google дает инженерам свободу действий. Одни команды отслеживают, какие баги были найдены какими тест-кейсами, а другие не считают эти данные полезными для своего проекта. Некоторые баги создаются в системе автоматически, не все они были найдены в ходе ручного выполнения тестов.
Рис. 3.17. Изменение общего количества багов, заведенных в ходе выполнения тестов GTCM, со временем
Основным требованием к GTCM с самого начала было наличие четкого и простого API. На самом деле и у системы TestScribe был API, но он базировался на SOAP, а схема аутентификации была настолько недружелюбной, что ею мало кто пользовался. Кроме того, с повышением внутреннего уровня безопасности тот режим аутентификации стал непригодным. Эти проблемы решились, когда у GTCM появился RESTful JSON API.
Команда разработки собирается скоро открыть GTCM для внешнего использования. Мы надеемся перевести эту базу данных тест-кейсов на модель открытого кода, чтобы поддерживать ее всем миром. Система GTCM проектировалась с расчетом на продолжение использования извне. Она построена на базе Google App Engine для обеспечения масштабируемости и для того, чтобы другие компании могли развернуть у себя свою копию системы. Внутренняя структура GTCM сделана так, чтобы отделить большую часть логики и пользовательских интерфейсов от Google App Engine, чтобы люди могли портировать систему. Следите за Google Testing Blog, если хотите узнать больше об этом процессе.
Интересные факты из жизни багов
Каждый тестировщик знает, что такое баги и баг-репорты. Поиск багов, сортировка багов, исправление багов, отлов регрессионных багов — основной костяк работы по контролю качества программных продуктов. Эта часть тестирования, пожалуй, больше всего распространена в Google, но и здесь есть несколько интересных особенностей. В этом разделе мы не будем говорить о «жучках», которые заносятся в систему, чтобы отслеживать работу ее элементов. Речь пойдет только о реальных ошибках в коде. Ежедневная работа команд разработки чаще всего связана именно с ними.
Итак, сначала был баг. Баги может найти и занести в багтрекинговую систему любой сотрудник Google. Менеджеры продуктов заводят баги еще на ранних версиях продукта, когда находят расхождения со спецификацией или со своим представлением о продукте. Разработчики заводят баги, когда понимают, что случайно поломали свой код или зацепили чужой, или когда сами используют продукты Google. Баги могут прийти с полей: в ходе работы краудсорс-тестировщиков или внешнего тестирования сторонними компаниями. Коммьюнити-менеджеры, которые следят за сообщениями в специальных группах, посвященных продуктам, тоже могут заводить баги. Во внутренних версиях некоторых приложений, например Google Maps, можно сообщить о баге одним кликом. Иногда баг регистрируется через API прямо из приложения.
Если процесс отслеживания багов и связанный с ним объем работы — это такая большая часть работы инженеров, понятное дело, хочется такой процесс автоматизировать. Первой попыткой подобной автоматизации в Google была система под названием BugsDB: простая база данных из нескольких таблиц и запросов, где можно было хранить и получать информацию и даже считать какую-то статистику. Системой BugDB пользовались до 2005 года, пока два предприимчивых инженера, Тед Мао[41] и Рави Гампала, не создали Buganizer.
Вместе с Buganizer мы получили новую гибкую n-уровневую иерархию компонентов взамен простой иерархии «проект компонент версия», которая была в BugDB (да и во всех остальных коммерческих багтрекинговых системах того времени). Стало проще учитывать и отслеживать баги, появился новый жизненный цикл рассмотрения и сопровождения багов. Упростилось отслеживание групп багов — теперь мы могли создавать и управлять целыми списками, строить диаграммы и отчеты. Разработчики реализовали полнотекстовый поиск, историю изменений, настройки «по умолчанию» при создании бага. В целом использовать новую систему стало намного удобнее, пользовательский интерфейс стал интуитивно понятным. Плюс с добавлением аутентификации повысилась безопасность.
Немного подробнее о Buganizer