Джек Креншоу - Давайте создадим компилятор!
Управляющие структуры
Мы почти дома. Имея булевы выражения легко добавить управляющие структуры. Для TINY мы разрешим только две из них, IF и WHILE:
<if> ::= IF <bool-expression> <block> [ ELSE <block>] ENDIF
<while> ::= WHILE <bool-expression> <block> ENDWHILE
Еще раз позвольте мне разъяснить решения, подразумевающиеся в этом синтаксисе, который сильно отличается от синтаксиса C или Pascal. В обоих этих языках «тело» IF или WHILE расценивается как одиночный оператор. Если вы предполагаете использовать блок из более чем одного оператора вы должны создать составной утверждение использую BEGIN-END (в Pascal) или '{}' (в C). В TINY (и KISS) нет таких вещей как составное утверждение... одиночное или множественное, они являются в этом языке просто блоками.
В KISS все управляющие структуры имеют явные и уникальные ключевые слова, выделяющие операторный блок поэтому не может быть никакой путаницы где он начинается и заканчивается. Это современный подход, используемый в таких уважаемых языках, как Ada и Modula-2 и он полностью устраняет проблему «висячих else».
Обратите внимание, что я мог бы использовать то же самое ключевое слово END для завершения всех конструкций, как это сделано в Pascal. (Закрывающая '}' в C служит той же самой цели.) Но это всегда вело к неразберихе, вот почему программисты на Pascal предпочитают писать так:
end { loop }
или end { if }
Как я объяснил в пятой части, использование уникальных терминальных ключевых слов увеличивает размер списка ключевых слов и, следовательно, замедляет лексический анализ, но в данном случае это кажется небольшой ценой за дополнительную подстраховку. Лучше обнаруживать ошибки во время компиляции, чем во время выполнения.
Одна последняя мысль: каждая из двух конструкций выше имеют нетерминалы
<bool-expression> и <block>,
расположенные рядом без разделяющих ключевых слов. В Паскале мы ожидали бы в этом месте ключевые слова THEN и DO.
Я не вижу проблем в том, чтобы опустить эти ключевые слова, и синтаксический анализатор также не будет иметь проблем, при условии, что мы не сделаем ошибок в bool-expression. С другой стороны, если мы включим эти дополнительные ключевые слова мы получили бы еще один уровень подстраховки за малые деньги, и с этим у меня также нет проблем. Примите правильное решение каким путем пойти.
ОК, после этого небольшого объяснения давайте продолжим. Как обычно нам понадобятся несколько новых подпрограмм генерации кода. Они генерируют код для условных и безусловных переходов:
{–}
{ Branch Unconditional }
procedure Branch(L: string);
begin
EmitLn('BRA ' + L);
end;
{–}
{ Branch False }
procedure BranchFalse(L: string);
begin
EmitLn('TST D0');
EmitLn('BEQ ' + L);
end;
{–}
Исключая изоляцию подпрограмм генератора кода, код для анализа управляющих конструкций такой же, как вы видели прежде:
{–}
{ Recognize and Translate an IF Construct }
procedure Block; Forward;
procedure DoIf;
var L1, L2: string;
begin
Match('i');
BoolExpression;
L1 := NewLabel;
L2 := L1;
BranchFalse(L1);
Block;
if Look = 'l' then begin
Match('l');
L2 := NewLabel;
Branch(L2);
PostLabel(L1);
Block;
end;
PostLabel(L2);
Match('e');
end;
{–}
{ Parse and Translate a WHILE Statement }
procedure DoWhile;
var L1, L2: string;
begin
Match('w');
L1 := NewLabel;
L2 := NewLabel;
PostLabel(L1);
BoolExpression;
BranchFalse(L2);
Block;
Match('e');
Branch(L1);
PostLabel(L2);
end;
{–}
Чтобы связать все это вместе нам нужно только изменить процедуру Block чтобы распознавать ключевые слова IF и WHILE. Как обычно мы расширим определение блока так:
<block> ::= ( <statement> )*
где
<statement> ::= <if> | <while> | <assignment>
Соответствующий код:
{–}
{ Parse and Translate a Block of Statements }
procedure Block;
begin
while not(Look in ['e', 'l']) do begin
case Look of
'i': DoIf;
'w': DoWhile;
else Assignment;
end;
end;
end;
{–}
Добавьте подпрограммы, которые я дал, откомпилируйте и протестируйте их. У вас должна быть возможность анализировать односимвольные версии любых управляющих конструкции. Выглядит довольно хорошо!
Фактически, за исключением односимвольного ограничения, мы получили практически полную версию TINY. Я назову его TINY Version 0.1.
Лексический анализ
Конечно, вы знаете, что будет дальше: Мы должны преобразовать программу так, чтобы она могла работать с многосимвольными ключевыми словами, переводами строк и пробелами. Мы только что прошли все это в седьмой главе. Мы будем использовать метод распределенного сканера, который я показал вам в этой главе. Фактическая реализация немного отличается, потому что различается способ, которым я обрабатываю переводы строк.
Для начала, давайте просто разрешим пробелы. Для этого необходимо только добавить вызовы SkipWhite в конец трех подпрограмм GetName, GetNum и Match. Вызов SkipWhite в Init запускает помпу в случае если есть ведущие пробелы.
Затем мы должны обрабатывать переводы строк. Это в действительности двухшаговый процесс так как обработка переносов с односимвольными токенами отличается от таковой для многосимвольных токенов. Мы можем устранить часть работы сделав оба шага одновременно, но я чувствую себя спокойней, работая последовательно.
Вставьте новую процедуру:
{–}
{ Skip Over an End-of-Line }
procedure NewLine;
begin
while Look = CR do begin
GetChar;
if Look = LF then GetChar;
SkipWhite;
end;
end;
{–}
Заметьте, что мы видели эту процедуру раньше в виде процедуры Fin. Я изменил имя, так как новое кажется более соответствующим фактическому назначению. Я также изменил код чтобы учесть множественные переносы и строки только с пробелами.
Следующим шагом будет вставка вызовов NewLine везде, где мы посчитаем перенос допустимым. Как я подчеркивал ранее, этот момент может очень различаться для разных языков. В TINY я решил разрешить их практически в любом месте. Это означает, что нам нужно вызывать NewLine в начале (не в конце как с SkipWhite) процедур GetName, GetNum и Match.
Для процедур, которые имеют циклы While, таких как TopDecl, нам нужен вызов NewLine в начале процедуры и в конце каждого цикла. Таким способом мы можем быть уверены, что NewLine вызывается в начале каждого прохода через цикл.
Если вы все это сделали, испытайте программу и проверьте, что она действительно обрабатывает пробелы и переносы.
Если это так, тогда мы готовы работать с многосимвольными токенами и ключевыми словами. Для начала, добавьте дополнительные объявления (скопированные почти дословно из главы 7):
{–}
{ Type Declarations }
type Symbol = string[8];
SymTab = array[1..1000] of Symbol;
TabPtr = ^SymTab;
{–}
{ Variable Declarations }
var Look : char; { Lookahead Character }
Token: char; { Encoded Token }
Value: string[16]; { Unencoded Token }
ST: Array['A'..'Z'] of char;
{–}
{ Definition of Keywords and Token Types }
const NKW = 9;
NKW1 = 10;
const KWlist: array[1..NKW] of Symbol =
('IF', 'ELSE', 'ENDIF', 'WHILE', 'ENDWHILE',
'VAR', 'BEGIN', 'END', 'PROGRAM');
const KWcode: string[NKW1] = 'xilewevbep';
{–}
Затем добавьте три процедуры, также из седьмой главы:
{–}
{ Table Lookup }
function Lookup(T: TabPtr; s: string; n: integer): integer;
var i: integer;
found: Boolean;
begin
found := false;
i := n;
while (i > 0) and not found do
if s = T^[i] then
found := true
else
dec(i);
Lookup := i;
end;
{–}
.
.
{–}
{ Get an Identifier and Scan it for Keywords }
procedure Scan;
begin
GetName;
Token := KWcode[Lookup(Addr(KWlist), Value, NKW) + 1];
end;
{–}
.
.
{–}
{ Match a Specific Input String }
procedure MatchString(x: string);
begin
if Value <> x then Expected('''' + x + '''');
end;
{–}
Теперь мы должны сделать довольно много тонких изменений в оставшихся процедурах. Сначала мы должны изменить функцию GetName на процедуру, снова как в главе 7:
{–}
{ Get an Identifier }
procedure GetName;
begin
NewLine;
if not IsAlpha(Look) then Expected('Name');
Value := '';
while IsAlNum(Look) do begin
Value := Value + UpCase(Look);
GetChar;
end;
SkipWhite;
end;
{–}
Обратите внимание, что эта процедура оставляет свой результат в глобальной строковой переменной Value.
Затем, мы должны изменить каждую обращение к GetName чтобы отразить ее новую форму. Они происходят в Factor, Assignment и Decl:
{–}
{ Parse and Translate a Math Factor }
procedure BoolExpression; Forward;
procedure Factor;
begin
if Look = '(' then begin
Match('(');
BoolExpression;
Match(')');
end
else if IsAlpha(Look) then begin
GetName;
LoadVar(Value[1]);
end
else
LoadConst(GetNum);
end;
{–}
.
.
{–}
{ Parse and Translate an Assignment Statement }
procedure Assignment;
var Name: char;
begin
Name := Value[1];
Match('=');
BoolExpression;
Store(Name);
end;
{–}
.
.
{–}
{ Parse and Translate a Data Declaration }
procedure Decl;
begin
GetName;
Alloc(Value[1]);
while Look = ',' do begin
Match(',');
GetName;
Alloc(Value[1]);
end;
end;
{–}
(Заметьте, что мы все еще разрешаем только односимвольные имена переменных поэтому мы используем здесь простое решение и просто используем первый символ строки.)
Наконец, мы должны внести изменения, позволяющие использовать Token вместо Look как символа для проверки и вызывать Scan в подходящих местах. По большей части это включает удаление вызовов Match, редкие замены вызовов Match на вызовы MatchString, и замену вызовов NewLine на вызовы Scan. Вот затронутые подпрограммы:
{–}
{ Recognize and Translate an IF Construct }
procedure Block; Forward;